

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Graphite 0.9.10 documentation

Graphite Documentation

	Overview
	About the project

	The architecture in a nutshell

	Installing Graphite
	Dependencies

	Fulfilling Dependencies

	Default Installation Layout
	Whisper

	Carbon and Graphite-web

	Installing Graphite
	Installing From Source
	Installing in the Default Location

	Installing Carbon in a Custom Location

	Installing Graphite-web in a Custom Location

	Installing From Pip
	Installing in the Default Location

	Installing Carbon in a Custom Location

	Installing Graphite-web in a Custom Location

	Installing in Virtualenv
	Installing in the Default Location

	Installing in a Custom Location

	Running Carbon Within Virtualenv

	Running Graphite-web Within Virtualenv
	Apache mod_wsgi

	Gunicorn

	uWSGI

	Initial Configuration

	Help! It didn’t work!

	Post-Install Tasks

	The Carbon Daemons
	carbon-cache.py

	carbon-relay.py

	carbon-aggregator.py

	Configuring Carbon
	carbon.conf

	storage-schemas.conf

	storage-aggregation.conf

	relay-rules.conf

	aggregation-rules.conf

	whitelist and blacklist

	Feeding In Your Data
	The plaintext protocol

	The pickle protocol

	Using AMQP

	Configuring The Webapp

	Administering The Webapp

	Using The Composer

	The Render URL API
	Graphing Metrics
	target

	from / until

	Data Display Formats
	format
	png

	raw

	csv

	json

	svg

	pickle

	rawData

	Graph Parameters
	areaAlpha

	areaMode

	bgcolor

	cacheTimeout

	colorList

	drawNullAsZero

	fgcolor

	fontBold

	fontItalic

	fontName

	fontSize

	format

	from

	graphOnly

	graphTypes

	hideLegend

	hideAxes

	hideYAxis

	hideGrid

	height

	jsonp

	leftColor

	leftDashed

	leftWidth

	lineMode

	lineWidth

	logBase

	localOnly

	majorGridLineColor

	margin

	max

	minorGridLineColor

	minorY

	min

	minXStep

	noCache

	pickle

	pieMode

	rightColor

	rightDashed

	rightWidth

	template

	thickness

	title

	tz

	uniqueLegend

	until

	vtitle

	vtitleRight

	width

	xFormat

	yAxisSide

	yLimit

	yLimitLeft

	yLimitRight

	yMin

	yMax

	yMaxLeft

	yMaxRight

	yMinLeft

	yMinRight

	yStep

	yStepLeft

	yStepRight

	yUnitSystem

	Functions
	Usage

	List of functions

	The Dashboard UI

	The Whisper Database
	Data Points

	Archives: Retention and Precision

	Rollup Aggregation

	Multi-Archive Storage and Retrieval Behavior

	Disk Space Efficiency

	Differences Between Whisper and RRD

	Performance

	Database Format

	Graphite Terminology

	Tools That Work With Graphite
	Bucky

	collectd

	Collectl

	Charcoal

	Diamond

	Ganglia

	GDash

	Graphene

	Graphite-relay

	Graphite-Tattle

	Graphiti

	Graphitoid

	Graphios

	Graphitejs

	Grockets

	HoardD

	Host sFlow

	hubot-scripts

	jmxtrans

	Logster

	Pencil

	Rocksteady

	Scales

	Shinken

	statsd

	Tasseo

	Who is using Graphite?

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Overview

Graphite does two things:

	Store numeric time-series data

	Render graphs of this data on demand

What Graphite does not do is collect data for you, however there are some tools out
there that know how to send data to graphite. Even though it often requires a little code,
sending data to Graphite is very simple.

About the project

Graphite is an enterprise-scale monitoring tool that runs well on cheap hardware. It was
originally designed and written by Chris Davis at Orbitz [http://www.orbitz.com/] in 2006 as side project that
ultimately grew to be a foundational monitoring tool. In 2008, Orbitz allowed Graphite to be
released under the open source Apache 2.0 license. Since then Chris has continued to work on
Graphite and has deployed it at other companies including Sears [http://www.sears.com/], where it serves as a pillar
of the e-commerce monitoring system. Today many large companies use it.

The architecture in a nutshell

Graphite consists of 3 software components:

	carbon - a Twisted [http://www.twistedmatrix.com/] daemon that listens for time-series data

	whisper - a simple database library for storing time-series data (similar in design to RRD [http://oss.oetiker.ch/rrdtool/])

	graphite webapp - A Django [http://www.djangoproject.com/] webapp that renders graphs on-demand using Cairo [http://www.cairographics.org/]

Feeding in your data is pretty easy, typically most
of the effort is in collecting the data to begin with. As you send datapoints
to Carbon, they become immediately available for graphing in the webapp. The
webapp offers several ways to create and display graphs including a simple
URL API for rendering that makes it easy to embed graphs in other
webpages.

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Installing Graphite

Dependencies

Graphite renders graphs using the Cairo graphics library. This adds dependencies on
several graphics-related libraries not typically found on a server. If you’re installing from source
you can use the check-dependencies.py script to see if the dependencies have
been met or not.

Basic Graphite requirements:

	Python 2.4 or greater (2.6+ recommended)

	Pycairo [http://www.cairographics.org/pycairo/]

	Django [http://www.djangoproject.com/] 1.0 or greater

	django-tagging [http://code.google.com/p/django-tagging/] 0.3.1 or greater

	Twisted [http://twistedmatrix.com/] 8.0 or greater (10.0+ recommended)

	zope-interface [http://pypi.python.org/pypi/zope.interface/] (often included in Twisted package dependency)

	fontconfig [http://www.freedesktop.org/wiki/Software/fontconfig/] and at least one font package (a system package usually)

	A WSGI server and web server. Popular choices are:
- Apache [http://projects.apache.org/projects/http_server.html] with mod_wsgi [http://code.google.com/p/modwsgi/] and mod_python [http://www.modpython.org/]
- gunicorn [http://gunicorn.org/] with nginx [http://nginx.org/]
- uWSGI [http://projects.unbit.it/uwsgi/] with nginx [http://nginx.org/]

Python 2.4 and 2.5 have extra requirements:

	simplejson [http://pypi.python.org/pypi/simplejson/]

	python-sqlite2 [http://code.google.com/p/pysqlite/] or another Django-supported database module

Additionally, the Graphite webapp and Carbon require the whisper database library which
is part of the Graphite project.

There are also several other dependencies required for additional features:

	Render caching: memcached [http://memcached.org/] and python-memcache [http://www.tummy.com/Community/software/python-memcached/]

	LDAP authentication: python-ldap [http://www.python-ldap.org/] (for LDAP authentication support in the webapp)

	AMQP support: txamqp [https://launchpad.net/txamqp/]

	RRD support: python-rrdtool [http://oss.oetiker.ch/rrdtool/prog/rrdpython.en.html]

	Dependant modules for additional database support (MySQL, PostgreSQL, etc). See Django database install [https://docs.djangoproject.com/en/dev/topics/install/#get-your-database-running] instructions and the Django database [https://docs.djangoproject.com/en/dev/ref/databases/] documentation for details

See also

On some systems it is necessary to install fonts for Cairo to use. If the
webapp is running but all graphs return as broken images, this may be why.

	https://answers.launchpad.net/graphite/+question/38833

	https://answers.launchpad.net/graphite/+question/133390

	https://answers.launchpad.net/graphite/+question/127623

Fulfilling Dependencies

Most current Linux distributions have all of the requirements available in the base packages.
RHEL based distributions may require the EPEL [http://fedoraproject.org/wiki/EPEL/] repository for requirements.
Python module dependencies can be install with pip [http://www.pip-installer.org/] rather than system packages if desired or if using
a Python version that differs from the system default. Some modules (such as Cairo) may require
library development headers to be available.

Default Installation Layout

Graphite defaults to an installation layout that puts the entire install in its own directory: /opt/graphite

Whisper

Whisper is installed Python’s system-wide site-packages directory with Whisper’s utilities installed
in the bin dir of the system’s default prefix (generally /usr/bin/).

Carbon and Graphite-web

Carbon and Graphite-web are installed in /opt/graphite/ with the following layout:

	bin/

	conf/

	lib/

Carbon PYTHONPATH

	storage/

	log

Log directory for Carbon and Graphite-web

	rrd

Location for RRD files to be read

	whisper

Location for Whisper data files to be stored and read

	webapp/

Graphite-web PYTHONPATH

	graphite/

Location of manage.py and local_settings.py

	content/

Graphite-web static content directory

Installing Graphite

Several installation options exist:

	Installing From Source
	Installing in the Default Location

	Installing Carbon in a Custom Location

	Installing Graphite-web in a Custom Location

	Installing From Pip
	Installing in the Default Location

	Installing Carbon in a Custom Location

	Installing Graphite-web in a Custom Location

	Installing in Virtualenv
	Installing in the Default Location

	Installing in a Custom Location

	Running Carbon Within Virtualenv

	Running Graphite-web Within Virtualenv
	Apache mod_wsgi

	Gunicorn

	uWSGI

Initial Configuration

Help! It didn’t work!

If you run into any issues with Graphite, please to post a question to our
Questions forum on Launchpad [https://answers.launchpad.net/graphite]
or join us on IRC in #graphite on FreeNode

Post-Install Tasks

	Configuring Carbon

	Once you’ve installed everything you will need to create some basic configuration.
Initially none of the config files are created by the installer but example files
are provided. Simply copy the .example files and customize.

	Administering Carbon

	Once Carbon is configured, you need to start it up.

	Feeding In Your Data

	Once it’s up and running, you need to feed it some data.

	Configuring The Webapp

	With data getting into carbon, you probably want to look at graphs of it.
So now we turn our attention to the webapp.

	Administering The Webapp

	Once its configured you’ll need to get it running.

	Using the Composer

	Now that the webapp is running, you probably want to learn how to use it.

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

 	Installing Graphite

Installing From Source

The latest source tarballs for Graphite-web, Carbon, and Whisper may be fetched from the Graphite
project download page [https://launchpad.net/graphite/+download] or the latest development branches may be cloned from the Github project page [http://github.com/graphite-project]:

	Graphite-web: git clone https://github.com/graphite-project/graphite-web.git

	Carbon: git clone https://github.com/graphite-project/carbon.git

	Whisper: git clone https://github.com/graphite-project/whisper.git

Installing in the Default Location

To install Graphite in the default location, /opt/graphite/, simply execute
python setup.py install as root in each of the project directories for Graphite-web, Carbon, and Whisper.

Installing Carbon in a Custom Location

Carbon’s setup.py installer is configured to use a prefix of /opt/graphite and an
install-lib of /opt/graphite/lib. Carbon’s lifecycle wrapper scripts and utilities
are installed in bin, configuration within conf, and stored data in storage all within prefix.
These may be overridden by passing parameters to the setup.py install command.

The following parameters influence the install location:

	--prefix

Location to place the bin/ and storage/ and conf/ directories (defaults to /opt/graphite/)

	--install-lib

Location to install Python modules (default: /opt/graphite/lib)

	--install-data

Location to place the storage and conf directories (default: value of prefix)

	--install-scripts

Location to place the scripts (default: bin/ inside of prefix)

For example, to install everything in /srv/graphite/:

python setup.py install --prefix=/srv/graphite --install-lib=/srv/graphite/lib

To install Carbon into the system-wide site-packages directory with scripts in /usr/bin and storage and
configuration in /usr/share/graphite:

python setup.py install --install-scripts=/usr/bin --install-lib=/usr/lib/python2.6/site-packages --install-data=/var/lib/graphite

Installing Graphite-web in a Custom Location

Graphite-web’s setup.py installer is configured to use a prefix of /opt/graphite and an install-lib of /opt/graphite/webapp. Utilities are installed in bin, and configuration in conf within the prefix. These may be overridden by passing parameters to setup.py install

The following parameters influence the install location:

	--prefix

Location to place the bin/ and conf/ directories (defaults to /opt/graphite/)

	--install-lib

Location to install Python modules (default: /opt/graphite/webapp)

	--install-data

Location to place the webapp/content and conf directories (default: value of prefix)

	--install-scripts

Location to place scripts (default: bin/ inside of prefix)

For example, to install everything in /srv/graphite/:

python setup.py install --prefix=/srv/graphite --install-lib=/srv/graphite/webapp

To install the Graphite-web code into the system-wide site-packages directory with scripts in /usr/bin and storage configuration, and content in /usr/share/graphite:

python setup.py install --install-scripts=/usr/bin --install-lib=/usr/lib/python2.6/site-packages --install-data=/var/lib/graphite

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

 	Installing Graphite

Installing From Pip

Versioned Graphite releases can be installed via pip [http://pypi.python.org/pypi/pip]. When installing with pip,
Installation of dependencies will automatically be attempted.

Installing in the Default Location

To install Graphite in the default location, /opt/graphite/,
simply execute as root:

pip install whisper
pip install carbon
pip install graphite-web

Note

On RedHat-based systems using the python-pip package, the pip executable is named pip-python

Installing Carbon in a Custom Location

Installation of Carbon in a custom location with pip is similar to doing so from a source install.
Arguments to the underlying setup.py controlling installation location can be passed through pip
with the --install-option option.

See Installing Carbon in a Custom Location for details of locations and available arguments

For example, to install everything in /srv/graphite/:

pip install carbon --install-option="--prefix=/srv/graphite" --install-option="--install-lib=/srv/graphite/lib"

To install Carbon into the system-wide site-packages directory with scripts in /usr/bin and storage and
configuration in /usr/share/graphite:

pip install carbon --install-option="--install-scripts=/usr/bin" --install-option="--install-lib=/usr/lib/python2.6/site-packages" --install-option="--install-data=/var/lib/graphite"

Installing Graphite-web in a Custom Location

Installation of Graphite-web in a custom location with pip is similar to doing so from a source install.
Arguments to the underlying setup.py controlling installation location can be passed through pip
with the --install-option option.

See Installing Graphite-web in a Custom Location for details on default locations and available arguments

For example, to install everything in /srv/graphite/:

pip install graphite-web --install-option="--prefix=/srv/graphite" --install-option="--install-lib=/srv/graphite/webapp"

To install the Graphite-web code into the system-wide site-packages directory with scripts in
/usr/bin and storage configuration, and content in /usr/share/graphite:

pip install graphite-web --install-option="--install-scripts=/usr/bin" install-option="--install-lib=/usr/lib/python2.6/site-packages" --install-option="--install-data=/var/lib/graphite"

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

 	Installing Graphite

Installing in Virtualenv

Virtualenv [http://virtualenv.org/] provides an isolated Python environment to run Graphite in.

Installing in the Default Location

To install Graphite in the default location, /opt/graphite/,
create a virtualenv in /opt/graphite and activate it:

virtualenv /opt/graphite
source /opt/graphite/bin/activate

Once the virtualenv is activated, Graphite and Carbon can be installed
from source or via pip. Note that dependencies will
need to be installed while the virtualenv is activated unless
–system-site-packages [http://www.virtualenv.org/en/latest/index.html#the-system-site-packages-option]
is specified at virtualenv creation time.

Installing in a Custom Location

To install from source activate the virtualenv and see the instructions for graphite-web and carbon

Running Carbon Within Virtualenv

Carbon may be run within Virtualenv by activating virtualenv [http://www.virtualenv.org/en/latest/index.html#activate-script] before Carbon is started

Running Graphite-web Within Virtualenv

Running Django’s manage.py within virtualenv requires activating virtualenv [http://www.virtualenv.org/en/latest/index.html#activate-script] before executing
as normal.

The method of running Graphite-web within Virtualenv depends on the WSGI server used:

Apache mod_wsgi

Note

The version Python used to compile mod_wsgi must match the Python installed in the virtualenv (generally the system Python)

To the Apache mod_wsgi [http://code.google.com/p/modwsgi/] config, add the root of the virtualenv as WSGIPythonHome, /opt/graphite
in this example:

WSGIPythonHome /opt/graphite

and add the virtualenv’s python site-packages to the graphite.wsgi file, python 2.6 in /opt/graphite
in this example:

site.addsitedir('/opt/graphite/lib/python2.6/site-packages')

See the mod_wsgi documentation on Virtual Environments <http://code.google.com/p/modwsgi/wiki/VirtualEnvironments> for more details.

Gunicorn

Ensure Gunicorn [http://gunicorn.org/] is installed in the activated virtualenv and execute as normal. If gunicorn is
installed system-wide, it may be necessary to execute it from the virtualenv’s bin path

uWSGI

Execute uWSGI [http://projects.unbit.it/uwsgi] using the -H option to specify the virtualenv root. See the uWSGI documentation on virtualenv [http://projects.unbit.it/uwsgi/wiki/VirtualEnv] for more details.

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

The Carbon Daemons

When we talk about “Carbon” we mean one or more of various daemons that make up the
storage backend of a Graphite installation. In simple installations, there is typically
only one daemon, carbon-cache.py. This document gives a brief overview of what
each daemon does and how you can use them to build a more sophisticated storage backend.

All of the carbon daemons listen for time-series data and can accept it over a common
set of protocols. However, they differ in what they do with
the data once they receive it.

carbon-cache.py

carbon-cache.py accepts metrics over various protocols and writes them to disk as efficiently as
possible. This requires caching metric values in RAM as they are received, and
flushing them to disk on an interval using the underlying whisper library.

carbon-cache.py requires some basic configuration files to run:

	carbon.conf

	The [cache] section tells carbon-cache.py what ports (2003/2004/7002),
protocols (newline delimited, pickle) and transports (TCP/UDP) to listen on.

	storage-schemas.conf

	Defines a retention policy for incoming metrics based on regex patterns. This
policy is passed to whisper when the .wsp file is pre-allocated, and
dictates how long data is stored for.

As the number of incoming metrics increases, one carbon-cache.py instance may not be
enough to handle the I/O load. To scale out, simply run multiple
carbon-cache.py instances (on one or more machines) behind a
carbon-aggregator.py or carbon-relay.py.

carbon-relay.py

carbon-relay.py serves two distinct purposes: replication and sharding.

When running with RELAY_METHOD = rules, a carbon-relay.py instance can
run in place of a carbon-cache.py server and relay all incoming metrics to
multiple backend carbon-cache.py‘s running on different ports or hosts.

In RELAY_METHOD = consistent-hashing mode, a CH_HOST_LIST setting defines a
sharding strategy across multiple carbon-cache.py backends. The same
consistent hashing list can be provided to the graphite webapp via CARBONLINK_HOSTS to
spread reads across the multiple backends.

carbon-relay.py is configured via:

	carbon.conf

	The [relay] section defines listener host/ports and a RELAY_METHOD

	relay-rules.conf

	In RELAY_METHOD = rules, pattern/servers tuples define what servers
metrics matching certain regex rules are forwarded to.

carbon-aggregator.py

carbon-aggregator.py can be run in front of carbon-cache.py to buffer
metrics over time before reporting them into whisper. This is
useful when granular reporting is not required, and can help reduce I/O load
and whisper file sizes due to lower retention policies.

carbon-aggregator.py is configured via:

	carbon.conf

	The [aggregator] section defines listener and destination host/ports.

	aggregation-rules.conf

	Defines a time interval (in seconds) and aggregation function (sum or
average) for incoming metrics matching a certain pattern. At the end of each
interval, the values received are aggregated and published to
carbon-cache.py as a single metric.

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Configuring Carbon

Carbon’s config files all live in /opt/graphite/conf/. If you’ve just installed Graphite, none of the .conf files will
exist yet, but there will be a .conf.example file for each one. Simply copy the example files, removing the .example extension, and customize your settings.

carbon.conf

This is the main config file, and defines the settings for each Carbon daemon.

Each setting within this file is documented via comments in the config file itself. The settings are broken down into sections for each daemon - carbon-cache is controlled by the [cache] section, carbon-relay is controlled by [relay] and carbon-aggregator by [aggregator]. However, if this is your first time using Graphite, don’t worry about anything but the [cache] section for now.

Tip

Carbon-cache and carbon-relay can run on the same host! Try swapping the default ports listed for LINE_RECEIVER_PORT and PICKLE_RECEIVER_PORT between the [cache] and [relay] sections to prevent having to reconfigure your deployed metric senders. When setting DESTINATIONS in the [relay] section, keep in mind your newly-set PICKLE_RECEIVER_PORT in the [cache] section.

storage-schemas.conf

This configuration file details retention rates for storing metrics. It matches metric paths to patterns, and tells whisper what frequency and history of datapoints to store.

Important notes before continuing:

	There can be many sections in this file.

	The sections are applied in order from the top (first) and bottom (last).

	The patterns are regular expressions, as opposed to the wildcards used in the URL API.

	The first pattern that matches the metric name is used.

	This retention is set at the time the first metric is sent.

	Changing this file will not affect already-created .wsp files. Use whisper-resize.py to change those.

A given rule is made up of 3 lines:

	A name, specified inside square brackets.

	A regex, specified after “pattern=”

	A retention rate line, specified after “retentions=”

The retentions line can specify multiple retentions. Each retention of frequency:history is separated by a comma.

Frequencies and histories are specified using the following suffixes:

	s - second

	m - minute

	h - hour

	d - day

	y - year

Here’s a simple, single retention example:

[garbage_collection]
pattern = garbageCollections$
retentions = 10s:14d

The name [garbage_collection] is mainly for documentation purposes, and will show up in creates.log when metrics matching this section are created.

The regular expression pattern will match any metric that ends with garbageCollections. For example, com.acmeCorp.instance01.jvm.memory.garbageCollections would match, but com.acmeCorp.instance01.jvm.memory.garbageCollections.full would not.

The retention line is saying that each datapoint represents 10 seconds, and we want to keep enough datapoints so that they add up to 14 days of data.

Here’s a more complicated example with multiple retention rates:

[apache_busyWorkers]
pattern = ^servers\.www.*\.workers\.busyWorkers$
retentions = 15s:7d,1m:21d,15m:5y

In this example, imagine that your metric scheme is servers.<servername>.<metrics>. The pattern would match server names that start with ‘www’, followed by anything, that are sending metrics that end in ‘.workers.busyWorkers’ (note the escaped ‘.’ characters).

Additionally, this example uses multiple retentions. The general rule is to specify retentions from most-precise:least-history to least-precise:most-history – whisper will properly downsample metrics (averaging by default) as thresholds for retention are crossed.

By using multiple retentions, you can store long histories of metrics while saving on disk space and I/O. Because whisper averages (by default) as it downsamples, one is able to determine totals of metrics by reversing the averaging process later on down the road.

Example: You store the number of sales per minute for 1 year, and the sales per hour for 5 years after that. You need to know the total sales for January 1st of the year before. You can query whisper for the raw data, and you’ll get 24 datapoints, one for each hour. They will most likely be floating point numbers. You can take each datapoint, multiply by 60 (the ratio of high-precision to low-precision datapoints) and still get the total sales per hour.

Additionally, whisper supports a legacy retention specification for backwards compatibility reasons - seconds-per-datapoint:count-of-datapoints

retentions = 60:1440

60 represents the number of seconds per datapoint, and 1440 represents the number of datapoints to store. This required some unnecessarily complicated math, so although it’s valid, it’s not recommended.

storage-aggregation.conf

This file defines how to aggregate data to lower-precision retentions. The format is similar to storage-schemas.conf.
Important notes before continuing:

	This file is optional. If it is not present, defaults will be used.

	There is no retentions line. Instead, there are xFilesFactor and/or aggregationMethod lines.

	xFilesFactor should be a floating point number between 0 and 1, and specifies what fraction of the previous retention level’s slots must have non-null values in order to aggregate to a non-null value. The default is 0.5.

	aggregationMethod specifies the function used to aggregate values for the next retention level. Legal methods are average, sum, min, max, and last. The default is average.

	These are set at the time the first metric is sent.

	Changing this file will not affect .wsp files already created on disk. Use whisper-resize.py to change those.

Here’s an example:

[all_min]
pattern = \.min$
xFilesFactor = 0.1
aggregationMethod = min

The pattern above will match any metric that ends with .min.

The xFilesFactor line is saying that a minimum of 10% of the slots in the previous retention level must have values for next retention level to contain an aggregate.
The aggregationMethod line is saying that the aggregate function to use is min.

If either xFilesFactor or aggregationMethod is left out, the default value will be used.

The aggregation parameters are kept separate from the retention parameters because the former depends on the type of data being collected and the latter depends on volume and importance.

relay-rules.conf

Relay rules are used to send certain metrics to a certain backend. This is handled by the carbon-relay system. It must be running for relaying to work. You can use a regular expression to select the metrics and define the servers to which they should go with the servers line.

Example:

[example]
pattern = ^mydata\.foo\..+
servers = 10.1.2.3, 10.1.2.4:2004, myserver.mydomain.com

You must define at least one section as the default.

aggregation-rules.conf

Aggregation rules allow you to add several metrics together as the come in, reducing the need to sum() many metrics in every URL. Note that unlike some other config files, any time this file is modified it will take effect automatically. This requires the carbon-aggregator service to be running.

The form of each line in this file should be as follows:

output_template (frequency) = method input_pattern

This will capture any received metrics that match ‘input_pattern’
for calculating an aggregate metric. The calculation will occur
every ‘frequency’ seconds and the ‘method’ can specify ‘sum’ or
‘avg’. The name of the aggregate metric will be derived from
‘output_template’ filling in any captured fields from ‘input_pattern’.

For example, if your metric naming scheme is:

<env>.applications.<app>.<server>.<metric>

You could configure some aggregations like so:

<env>.applications.<app>.all.requests (60) = sum <env>.applications.<app>.*.requests
<env>.applications.<app>.all.latency (60) = avg <env>.applications.<app>.*.latency

As an example, if the following metrics are received:

prod.applications.apache.www01.requests
prod.applications.apache.www02.requests
prod.applications.apache.www03.requests
prod.applications.apache.www04.requests
prod.applications.apache.www05.requests

They would all go into the same aggregation buffer and after 60 seconds the
aggregate metric ‘prod.applications.apache.all.requests’ would be calculated
by summing their values.

whitelist and blacklist

The whitelist functionality allows any of the carbon daemons to only accept metrics that are explicitly
whitelisted and/or to reject blacklisted metrics. The functionality can be enabled in carbon.conf with
the USE_WHITELIST flag. This can be useful when too many metrics are being sent to a Graphite
instance or when there are metric senders sending useless or invalid metrics.

GRAPHITE_CONF_DIR is searched for whitelist.conf and blacklist.conf. Each file contains one regular
expressions per line to match against metric values. If the whitelist configuration is missing or empty,
all metrics will be passed through by default.

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Feeding In Your Data

Getting your data into Graphite is very flexible. There are three main methods for sending data to Graphite: Plaintext, Pickle, and AMQP.

It’s worth noting that data sent to Graphite is actually sent to the Carbon and Carbon-Relay, which then manage the data. The Graphite web interface reads this data back out, either from cache or straight off disk.

Choosing the right transfer method for you is dependent on how you want to build your application or script to send data:

	For a singular script, or for test data, the plaintext protocol is the most straightforward method.

	For sending large amounts of data, you’ll want to batch this data up and send it to Carbon’s pickle receiver.

	Finally, Carbon can listen to a message bus, via AMQP.

The plaintext protocol

The plaintext protocol is the most straightforward protocol supported by Carbon.

The data sent must be in the following format: <metric path> <metric value> <metric timestamp>. Carbon will then help translate this line of text into a metric that the web interface and Whisper understand.

On Unix, the nc program can be used to create a socket and send data to Carbon (by default, ‘plaintext’ runs on port 2003):

PORT=2003
SERVER=graphite.your.org
echo "local.random.diceroll 4 `date +%s`" | nc ${SERVER} ${PORT};

The pickle protocol

The pickle protocol is a much more efficient take on the plaintext protocol, and supports sending batches of metrics to Carbon in one go.

The general idea is that the pickled data forms a list of multi-level tuples:

[(path, (timestamp, value)), ...]

Once you’ve formed a list of sufficient size (don’t go too big!), send the data over a socket to Carbon’s pickle receiver (by default, port 2004). You’ll need to pack your pickled data into a packet containing a simple header:

payload = pickle.dumps(listOfMetricTuples)
header = struct.pack("!L", len(payload))
message = header + payload

You would then send the message object through a network socket.

Using AMQP

...

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Configuring The Webapp

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Administering The Webapp

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Using The Composer

...

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

The Render URL API

The graphite webapp provides a /render endpoint for generating graphs
and retreiving raw data. This endpoint accepts various arguments via query
string parameters. These parameters are separated by an ampersand (&)
and are supplied in the format:

&name=value

To verify that the api is running and able to generate images, open
http://GRAPHITE_HOST:GRAPHITE_PORT/render in a browser. The api should
return a simple 330x250 image with the text “No Data”.

Once the api is running and you’ve begun
feeding data into carbon, use the parameters below to
customize your graphs and pull out raw data. For example:

single server load on large graph
http://graphite/render?target=server.web1.load&height=800&width=600

average load across web machines over last 12 hours
http://graphite/render?target=averageSeries(server.web*.load)&from=-12hours

number of registered users over past day as raw json data
http://graphite/render?target=app.numUsers&format=json

rate of new signups per minute
http://graphite/render?target=summarize(deriviative(app.numUsers),"1min")&title=New_Users_Per_Minute

Note

Most of the functions and parameters are case sensitive.
For example &linewidth=2 will fail silently.
The correct parameter in this case is &lineWidth=2

Graphing Metrics

To begin graphing specific metrics, pass one or more target parameters
and specify a time window for the graph via from / until.

target

This will draw one or more metrics

Example:

&target=company.server05.applicationInstance04.requestsHandled
(draws one metric)

Let’s say there are 4 identical application instances running on each server.

&target=company.server05.applicationInstance*.requestsHandled
(draws 4 metrics / lines)

Now let’s say you have 10 servers.

&target=company.server*.applicationInstance*.requestsHandled
(draws 40 metrics / lines)

You can also run any number of functions on the various metrics before graphing.

&target=averageSeries(company.server*.applicationInstance.requestsHandled)
(draws 1 aggregate line)

The target param can also be repeated to graph multiple related metrics.

&target=company.server1.loadAvg&target=company.server1.memUsage

Note

If more than 10 metrics are drawn the legend is no longer displayed. See the hideLegend parameter for details.

from / until

These are optional parameters that specify the relative or absolute time period to graph.
from specifies the beginning, until specifies the end.
If from is omitted, it defaults to 24 hours ago.
If until is omitted, it defaults to the current time (now).

There are multiple formats for these functions:

&from=-RELATIVE_TIME
&from=ABSOLUTE_TIME

RELATIVE_TIME is a length of time since the current time.
It is always preceded my a minus sign (-) and follow by a unit of time.
Valid units of time:

	Abbreviation
	Unit

	s
	Seconds

	min
	Minutes

	h
	Hours

	d
	Days

	w
	Weeks

	mon
	30 Days (month)

	y
	365 Days (year)

ABSOLUTE_TIME is in the format HH:MM_YYMMDD, YYYYMMDD, MM/DD/YY, or any other
at(1)-compatible time format.

	Abbreviation
	Meaning

	HH
	Hours, in 24h clock format. Times before 12PM must include leading zeroes.

	MM
	Minutes

	YYYY
	4 Digit Year.

	MM
	Numeric month representation with leading zero

	DD
	Day of month with leading zero

&from and &until can mix absolute and relative time if desired.

Examples:

&from=-8d&until=-7d
(shows same day last week)

&from=04:00_20110501&until=16:00_20110501
(shows 4AM-4PM on May 1st, 2011)

&from=20091201&until=20091231
(shows December 2009)

&from=noon+yesterday
(shows data since 12:00pm on the previous day)

&from=6pm+today
(shows data since 6:00pm on the same day)

&from=january+1
(shows data since the beginning of the current year)

&from=monday
(show data since the previous monday)

Data Display Formats

Along with rendering an image, the api can also generate
SVG [http://www.w3.org/Graphics/SVG/] with embedded metadata or return the raw data in various
formats for external graphing, analysis or monitoring.

format

Controls the format of data returned.
Affects all &targets passed in the URL.

Examples:

&format=png
&format=raw
&format=csv
&format=json
&format=svg

png

Renders the graph as a PNG image of size determined by width and height

raw

Renders the data in a custom line-delimited format. Targets are output one per line and are of the format
<target name>,<start timestamp>,<end timestamp>,<series step>|[data]*

entries,1311836008,1311836013,1|1.0,2.0,3.0,5.0,6.0

csv

Renders the data in a CSV format suitable for import into a spreadsheet or for processing in a script

entries,2011-07-28 01:53:28,1.0
entries,2011-07-28 01:53:29,2.0
entries,2011-07-28 01:53:30,3.0
entries,2011-07-28 01:53:31,5.0
entries,2011-07-28 01:53:32,6.0

json

Renders the data as a json object. The jsonp option can be used to wrap this data in a named call
for cross-domain access

[{
 "target": "entries",
 "datapoints": [
 [1.0, 1311836008],
 [2.0, 1311836009],
 [3.0, 1311836010],
 [5.0, 1311836011],
 [6.0, 1311836012]
]
}]

svg

Renders the graph as SVG markup of size determined by width and height. Metadata about
the drawn graph is saved as an embedded script with the variable metadata being set to
an object describing the graph

<script>
 <![CDATA[
 metadata = {
 "area": {
 "xmin": 39.195507812499997,
 "ymin": 33.96875,
 "ymax": 623.794921875,
 "xmax": 1122
 },
 "series": [
 {
 "start": 1335398400,
 "step": 1800,
 "end": 1335425400,
 "name": "summarize(test.data, \"30min\", \"sum\")",
 "color": "#859900",
 "data": [null, null, 1.0, null, 1.0, null, 1.0, null, 1.0, null, 1.0, null, null, null, null],
 "options": {},
 "valuesPerPoint": 1
 }
],
 "y": {
 "labelValues": [0, 0.25, 0.5, 0.75, 1.0],
 "top": 1.0,
 "labels": ["0 ", "0.25 ", "0.50 ", "0.75 ", "1.00 "],
 "step": 0.25,
 "bottom": 0
 },
 "x": {
 "start": 1335398400,
 "end": 1335423600
 },
 "font": {
 "bold": false,
 "name": "Sans",
 "italic": false,
 "size": 10
 },
 "options": {
 "lineWidth": 1.2
 }
 }
]]>
</script>

pickle

Returns a Python pickle [http://docs.python.org/library/pickle.html] (serialized Python object).
The response will have the MIME type ‘application/pickle’. The pickled object is a list of
dictionaries with the keys: name, start, end, step, and values as below:

[
 {
 'name' : 'summarize(test.data, "30min", "sum")',
 'start': 1335398400,
 'end' : 1335425400,
 'step' : 1800,
 'values' : [None, None, 1.0, None, 1.0, None, 1.0, None, 1.0, None, 1.0, None, None, None, None],
 }
]

rawData

Deprecated since version 0.9.9.

Used to get numerical data out of the webapp instead of an image.
Can be set to true, false, csv.
Affects all &targets passed in the URL.

Example:

&target=carbon.agents.graphiteServer01.cpuUsage&from=-5min&rawData=true

Returns the following text:

carbon.agents.graphiteServer01.cpuUsage,1306217160,1306217460,60|0.0,0.00666666520965,0.00666666624282,0.0,0.0133345399694

Graph Parameters

areaAlpha

Default: 1.0

Takes a floating point number between 0.0 and 1.0
Sets the alpha (transparency) value of filled areas when using an areaMode

areaMode

Default: none

Enables filling of the area below the graphed lines. Fill area is the same color as
the line color associated with it. See areaAlpha to make this area transparent.
Takes one of the following parameters which determines the fill mode to use:

	none

	Disables areaMode

	first

	Fills the area under the first target and no other

	all

	Fills the areas under each target

	stacked

	Creates a graph where the filled area of each target is stacked on one another.
Each target line is displayed as the sum of all previous lines plus the value of the current line.

bgcolor

Default: value from the [default] template in graphTemplates.conf

Sets the background color of the graph.

	Color Names
	RGB Value

	black
	0,0,0

	white
	255,255,255

	blue
	100,100,255

	green
	0,200,0

	red
	200,0,50

	yellow
	255,255,0

	orange
	255, 165, 0

	purple
	200,100,255

	brown
	150,100,50

	aqua
	0,150,150

	gray
	175,175,175

	grey
	175,175,175

	magenta
	255,0,255

	pink
	255,100,100

	gold
	200,200,0

	rose
	200,150,200

	darkblue
	0,0,255

	darkgreen
	0,255,0

	darkred
	255,0,0

	darkgray
	111,111,111

	darkgrey
	111,111,111

RGB can be passed directly in the format #RRGGBB where RR, GG, and BB are 2-digit hex vaules for red, green and blue, respectively.

Examples:

&bgcolor=blue
&bgcolor=#2222FF

cacheTimeout

Default: The value of DEFAULT_CACHE_DURATION from local_settings.py

The time in seconds for the rendered graph to be cached (only relevant if memcached is configured)

colorList

Default: value from the [default] template in graphTemplates.conf

Takes one or more comma-separated color names or RGB values (see bgcolor for a list of color names) and uses that list in order as the colors of the lines. If more lines / metrics are drawn than colors passed, the list is reused in order.

Example:

&colorList=green,yellow,orange,red,purple,#DECAFF

drawNullAsZero

Default: false

Converts any None (null) values in the displayed metrics to zero at render time.

fgcolor

Default: value from the [default] template in graphTemplates.conf

Sets the foreground color.
This only affects the title, legend text, and axis labels.

See majorGridLineColor, and minorGridLineColor for further control of colors.

See bgcolor for a list of color names and details on formatting this parameter.

fontBold

Default: value from the [default] template in graphTemplates.conf

If set to true, makes the font bold.

Example:

&fontBold=true

fontItalic

Default: value from the [default] template in graphTemplates.conf

If set to true, makes the font italic / oblique.
Default is false.

Example:

&fontItalic=true

fontName

Default: value from the [default] template in graphTemplates.conf

Change the font used to render text on the graph.
The font must be installed on the Graphite Server.

Example:

&fontName=FreeMono

fontSize

Default: value from the [default] template in graphTemplates.conf

Changes the font size.
Must be passed a positive floating point number or integer equal to or greater than 1.
Default is 10

Example:

&fontSize=8

format

See: Data Display Formats

from

See: from / until

graphOnly

Default: False

Display only the graph area with no grid lines, axes, or legend

graphTypes

Default: line

Sets the type of graph to be rendered. Currently there are only two graph types:

	line

	A line graph displaying metrics as lines over time

	pie

	A pie graph with each slice displaying an aggregate of each metric calculated using the function
specified by pieMode

hideLegend

Default: <unset>

If set to true, the legend is not drawn.
If set to false, the legend is drawn.
If unset, the LEGEND_MAX_ITEMS settings in local_settings.py is used to determine
whether or not to display the legend.

Hint: If set to false the &height parameter may need to be increased to accommodate the additional text.

Example:

&hideLegend=false

hideAxes

Default: False

If set to true the X and Y axes will not be rendered
Example:

&hideAxes=true

hideYAxis

Default: False

If set to true the Y Axis will not be rendered

hideGrid

Default: False

If set to true the grid lines will not be rendered

Example:

&hideGrid=true

height

Default: 250

Sets the height of the generated graph image in pixels.

See also: width

Example:

&width=650&height=250

jsonp

Default: <unset>

If set and combined with format=json, wraps the JSON response in a function call
named by the parameter specified.

leftColor

Default: color chosen from colorList

In dual Y-axis mode, sets the color of all metrics associated with the left Y-axis.

leftDashed

Default: False

In dual Y-axis mode, draws all metrics associated with the left Y-axis using dashed lines

leftWidth

Default: value of the parameter lineWidth

In dual Y-axis mode, sets the line width of all metrics associated with the left Y-axis

lineMode

Default: slope

Sets the line drawing behavior. Takes one of the following parameters:

	slope

	Slope line mode draws a line from each point to the next. Periods will Null values will not be drawn

	staircase

	Staircase draws a flat line for the duration of a time period and then a vertical line up or down to the next value

	connected

	Like a slope line, but values are always connected with a slope line, regardless of whether or not there are Null values between them

Example:

&lineMode=staircase

lineWidth

Default: 1.2

Takes any floating point or integer (negative numbers do not error but will cause no line to be drawn).
Changes the width of the line in pixels.

Example:

&lineWidth=2

logBase

Default: <unset>

If set, draws the graph with a logarithmic scale of the specified base (e.g. 10 for common logarithm)

localOnly

Default: False

Set to prevent fetching from remote Graphite servers, only returning metrics which are accessible locally

majorGridLineColor

Default: value from the [default] template in graphTemplates.conf

Sets the color of the major grid lines.

See bgcolor for valid color names and formats.

Example:

&majorGridLineColor=#FF22FF

margin

Default: 10
Sets the margin around a graph image in pixels on all sides.

Example:

&margin=20

max

Deprecated since version 0.9.0: See yMax

minorGridLineColor

Default: value from the [default] template in graphTemplates.conf

Sets the color of the minor grid lines.

See bgcolor for valid color names and formats.

Example:

&minorGridLineColor=darkgrey

minorY

Sets the number of minor grid lines per major line on the y-axis.

Example:

&minorY=3

min

Deprecated since version 0.9.0: See yMin

minXStep

Default: 1

Sets the minimum pixel-step to use between datapoints drawn. Any value below this will trigger a
point consolidation of the series at render time. The default value of 1 combined with the default
lineWidth of 1.2 will cause a minimal amount of line overlap between close-together points. To
disable render-time point consolidation entirely, set this to 0 though note that series with more points
than there are pixels in the graph area (e.g. a few month’s worth of per-minute data) will look very
‘smooshed’ as there will be a good deal of line overlap. In response, one may use lineWidth to compensate
for this.

noCache

Default: False

Set to disable caching of rendered images

pickle

Deprecated since version 0.9.10: See Data Display Formats

pieMode

Default: average

The type of aggregation to use to calculate slices of a pie when graphType=pie.
One of:

	average

	The average of non-null points in the series

	maximum

	The maximum of non-null points in the series

	minimum

	THe minimum of non-null points in the series

rightColor

Default: color chosen from colorList

In dual Y-axis mode, sets the color of all metrics associated with the right Y-axis.

rightDashed

Default: False

In dual Y-axis mode, draws all metrics associated with the right Y-axis using dashed lines

rightWidth

Default: value of the parameter lineWidth

In dual Y-axis mode, sets the line width of all metrics associated with the right Y-axis

template

Default: default

Used to specify a template from graphTemplates.conf to use for default
colors and graph styles.

Example:

&template=plain

thickness

Deprecated since version 0.9.0: See: lineWidth

title

Default: <unset>

Puts a title at the top of the graph, center aligned.
If unset, no title is displayed.

Example:

&title=Apache Busy Threads, All Servers, Past 24h

tz

Default: The timezone specified in local_settings.py

Time zone to convert all times into.

Examples:

&tz=America/Los_Angeles
&tz=UTC

Note

To change the default timezone, edit webapp/graphite/local_settings.py.

uniqueLegend

Default: False

Display only unique legend items, removing any duplicates

until

See: from / until

vtitle

Default: <unset>

Labels the y-axis with vertical text.
If unset, no y-axis label is displayed.

Example:

&vtitle=Threads

vtitleRight

Default: <unset>

In dual Y-axis mode, sets the title of the right Y-Axis (See: vtitle)

width

Default: 330

Sets the width of the generated graph image in pixels.

See also: height

Example:

&width=650&height=250

xFormat

Default: Determined automatically based on the time-width of the X axis

Sets the time format used when displaying the X-axis. See
datetime.date.strftime() [http://docs.python.org/library/datetime.html#datetime.date.strftime]
for format specification details.

yAxisSide

Default: left

Sets the side of the graph on which to render the Y-axis. Accepts values of left or right

yLimit

Reserved for future use
See: yMax

yLimitLeft

Reserved for future use
See: yMaxLeft

yLimitRight

Reserved for future use
See: yMaxRight

yMin

Default: The lowest value of any of the series displayed

Manually sets the lower bound of the graph. Can be passed any integer or floating point number.

Example:

&yMin=0

yMax

Default: The highest value of any of the series displayed

Manually sets the upper bound of the graph. Can be passed any integer or floating point number.

Example:

&yMax=0.2345

yMaxLeft

In dual Y-axis mode, sets the upper bound of the left Y-Axis (See: yMax)

yMaxRight

In dual Y-axis mode, sets the upper bound of the right Y-Axis (See: yMax)

yMinLeft

In dual Y-axis mode, sets the lower bound of the left Y-Axis (See: yMin)

yMinRight

In dual Y-axis mode, sets the lower bound of the right Y-Axis (See: yMin)

yStep

Default: Calculated automatically

Manually set the value step between Y-axis labels and grid lines

yStepLeft

In dual Y-axis mode, Manually set the value step between the left Y-axis labels and grid lines (See: yStep)

yStepRight

In dual Y-axis mode, Manually set the value step between the right Y-axis labels and grid lines (See: yStep)

yUnitSystem

Default: si

Set the unit system for compacting Y-axis values (e.g. 23,000,000 becomes 23M).
Value can be one of:

	si

	Use si units (powers of 1000) - K, M, G, T, P

	binary

	Use binary units (powers of 1024) - Ki, Mi, Gi, Ti, Pi

	none

	Dont compact values, display the raw number

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Functions

Functions are used to transform, combine, and perform computations on series data. Functions are
applied using the Composer interface or by manipulating the target parameters in the
Render API.

Usage

Most functions are applied to one series list. Functions with the parameter
*seriesLists can take an arbitrary number of series lists. To pass multiple series lists
to a function which only takes one, use the group() function.

List of functions

	
absolute(seriesList)

	Takes one metric or a wildcard seriesList and applies the mathematical abs function to each
datapoint transforming it to its absolute value.

Example:

&target=absolute(Server.instance01.threads.busy)
&target=absolute(Server.instance*.threads.busy)

	
alias(seriesList, newName)

	Takes one metric or a wildcard seriesList and a string in quotes.
Prints the string instead of the metric name in the legend.

&target=alias(Sales.widgets.largeBlue,"Large Blue Widgets")

	
aliasByMetric(seriesList)

	Takes a seriesList and applies an alias derived from the base metric name.

&target=aliasByMetric(carbon.agents.graphite.creates)

	
aliasByNode(seriesList, *nodes)

	Takes a seriesList and applies an alias derived from one or more “node”
portion/s of the target name. Node indices are 0 indexed.

&target=aliasByNode(ganglia.*.cpu.load5,1)

	
aliasSub(seriesList, search, replace)

	Runs series names through a regex search/replace.

&target=aliasSub(ip.*TCP*,"^.*TCP(\d+)","\1")

	
alpha(seriesList, alpha)

	Assigns the given alpha transparency setting to the series. Takes a float value between 0 and 1.

	
areaBetween(seriesList)

	Draws the area in between the two series in seriesList

	
asPercent(seriesList, total=None)

	Calculates a percentage of the total of a wildcard series. If total is specified,
each series will be calculated as a percentage of that total. If total is not specified,
the sum of all points in the wildcard series will be used instead.

The total parameter may be a single series or a numeric value.

Example:

&target=asPercent(Server01.connections.{failed,succeeded}, Server01.connections.attempted)
&target=asPercent(apache01.threads.busy,1500)
&target=asPercent(Server01.cpu.*.jiffies)

	
averageAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics with an average value
above N for the time period specified.

Example:

&target=averageAbove(server*.instance*.threads.busy,25)

Draws the servers with average values above 25.

	
averageBelow(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics with an average value
below N for the time period specified.

Example:

&target=averageBelow(server*.instance*.threads.busy,25)

Draws the servers with average values below 25.

	
averageSeries(*seriesLists)

	Short Alias: avg()

Takes one metric or a wildcard seriesList.
Draws the average value of all metrics passed at each time.

Example:

&target=averageSeries(company.server.*.threads.busy)

	
averageSeriesWithWildcards(seriesList, *position)

	Call averageSeries after inserting wildcards at the given position(s).

Example:

&target=averageSeriesWithWildcards(host.cpu-[0-7].cpu-{user,system}.value, 1)

This would be the equivalent of
target=averageSeries(host.*.cpu-user.value)&target=averageSeries(host.*.cpu-system.value)

	
cactiStyle(seriesList)

	Takes a series list and modifies the aliases to provide column aligned
output with Current, Max, and Min values in the style of cacti.
NOTE: column alignment only works with monospace fonts such as terminus.

&target=cactiStyle(ganglia.*.net.bytes_out)

	
color(seriesList, theColor)

	Assigns the given color to the seriesList

Example:

&target=color(collectd.hostname.cpu.0.user, 'green')
&target=color(collectd.hostname.cpu.0.system, 'ff0000')
&target=color(collectd.hostname.cpu.0.idle, 'gray')
&target=color(collectd.hostname.cpu.0.idle, '6464ffaa')

	
constantLine(value)

	Takes a float F.

Draws a horizontal line at value F across the graph.

Example:

&target=constantLine(123.456)

	
cumulative(seriesList)

	Takes one metric or a wildcard seriesList.

By default, when a graph is drawn, and the width of the graph in pixels is
smaller than the number of datapoints to be graphed, Graphite averages the
value at each pixel. The cumulative() function changes the consolidation
function to sum from average. This is especially useful in sales graphs,
where fractional values make no sense (How can you have half of a sale?)

&target=cumulative(Sales.widgets.largeBlue)

	
currentAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics whose value is above N
at the end of the time period specified.

Example:

&target=highestAbove(server*.instance*.threads.busy,50)

Draws the servers with more than 50 busy threads.

	
currentBelow(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics whose value is below N
at the end of the time period specified.

Example:

&target=currentBelow(server*.instance*.threads.busy,3)

Draws the servers with less than 3 busy threads.

	
dashed(*seriesList)

	Takes one metric or a wildcard seriesList, followed by a float F.

Draw the selected metrics with a dotted line with segments of length F
If omitted, the default length of the segments is 5.0

Example:

&target=dashed(server01.instance01.memory.free,2.5)

	
derivative(seriesList)

	This is the opposite of the integral function. This is useful for taking a
running total metric and showing how many requests per minute were handled.

Example:

&target=derivative(company.server.application01.ifconfig.TXPackets)

Each time you run ifconfig, the RX and TXPackets are higher (assuming there
is network traffic.) By applying the derivative function, you can get an
idea of the packets per minute sent or received, even though you’re only
recording the total.

	
diffSeries(*seriesLists)

	Can take two or more metrics, or a single metric and a constant.
Subtracts parameters 2 through n from parameter 1.

Example:

&target=diffSeries(service.connections.total,service.connections.failed)
&target=diffSeries(service.connections.total,5)

	
divideSeries(dividendSeriesList, divisorSeriesList)

	Takes a dividend metric and a divisor metric and draws the division result.
A constant may not be passed. To divide by a constant, use the scale()
function (which is essentially a multiplication operation) and use the inverse
of the dividend. (Division by 8 = multiplication by 1/8 or 0.125)

Example:

&target=divideSeries(Series.dividends,Series.divisors)

	
drawAsInfinite(seriesList)

	Takes one metric or a wildcard seriesList.
If the value is zero, draw the line at 0. If the value is above zero, draw
the line at infinity. If the value is null or less than zero, do not draw
the line.

Useful for displaying on/off metrics, such as exit codes. (0 = success,
anything else = failure.)

Example:

drawAsInfinite(Testing.script.exitCode)

	
events(*tags)

	Returns the number of events at this point in time. Usable with
drawAsInfinite.

Example:

&target=events("tag-one", "tag-two")
&target=events("*")

Returns all events tagged as “tag-one” and “tag-two” and the second one
returns all events.

	
exclude(seriesList, pattern)

	Takes a metric or a wildcard seriesList, followed by a regular expression
in double quotes. Excludes metrics that match the regular expression.

Example:

&target=exclude(servers*.instance*.threads.busy,"server02")

	
group(*seriesLists)

	Takes an arbitrary number of seriesLists and adds them to a single seriesList. This is used
to pass multiple seriesLists to a function which only takes one

	
groupByNode(seriesList, nodeNum, callback)

	Takes a serieslist and maps a callback to subgroups within as defined by a common node

&target=groupByNode(ganglia.by-function.*.*.cpu.load5,2,"sumSeries")

Would return multiple series which are each the result of applying the "sumSeries" function
to groups joined on the second node (0 indexed) resulting in a list of targets like
sumSeries(ganglia.by-function.server1.*.cpu.load5),sumSeries(ganglia.by-function.server2.*.cpu.load5),...

	
highestAverage(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the top N metrics with the highest
average value for the time period specified.

Example:

&target=highestAverage(server*.instance*.threads.busy,5)

Draws the top 5 servers with the highest average value.

	
highestCurrent(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the N metrics with the highest value
at the end of the time period specified.

Example:

&target=highestCurrent(server*.instance*.threads.busy,5)

Draws the 5 servers with the highest busy threads.

	
highestMax(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.

Out of all metrics passed, draws only the N metrics with the highest maximum
value in the time period specified.

Example:

&target=highestCurrent(server*.instance*.threads.busy,5)

Draws the top 5 servers who have had the most busy threads during the time
period specified.

	
hitcount(seriesList, intervalString, alignToInterval=False)

	Estimate hit counts from a list of time series.

This function assumes the values in each time series represent
hits per second. It calculates hits per some larger interval
such as per day or per hour. This function is like summarize(),
except that it compensates automatically for different time scales
(so that a similar graph results from using either fine-grained
or coarse-grained records) and handles rarely-occurring events
gracefully.

	
holtWintersAberration(seriesList, delta=3)

	Performs a Holt-Winters forecast using the series as input data and plots the
positive or negative deviation of the series data from the forecast.

	
holtWintersConfidenceArea(seriesList, delta=3)

	Performs a Holt-Winters forecast using the series as input data and plots the
area between the upper and lower bands of the predicted forecast deviations.

	
holtWintersConfidenceBands(seriesList, delta=3)

	Performs a Holt-Winters forecast using the series as input data and plots
upper and lower bands with the predicted forecast deviations.

	
holtWintersForecast(seriesList)

	Performs a Holt-Winters forecast using the series as input data. Data from
one week previous to the series is used to bootstrap the initial forecast.

	
integral(seriesList)

	This will show the sum over time, sort of like a continuous addition function.
Useful for finding totals or trends in metrics that are collected per minute.

Example:

&target=integral(company.sales.perMinute)

This would start at zero on the left side of the graph, adding the sales each
minute, and show the total sales for the time period selected at the right
side, (time now, or the time specified by ‘&until=’).

	
keepLastValue(seriesList)

	Takes one metric or a wildcard seriesList.
Continues the line with the last received value when gaps (‘None’ values) appear in your data, rather than breaking your line.

Example:

&target=keepLastValue(Server01.connections.handled)

	
legendValue(seriesList, *valueTypes)

	Takes one metric or a wildcard seriesList and a string in quotes.
Appends a value to the metric name in the legend. Currently one or several of: last, avg,
total, min, max.
The last argument can be si (default) or binary, in that case values will be formatted in the
corresponding system.

&target=legendValue(Sales.widgets.largeBlue, ‘avg’, ‘max’, ‘si’)

	
limit(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.

Only draw the first N metrics. Useful when testing a wildcard in a metric.

Example:

&target=limit(server*.instance*.memory.free,5)

Draws only the first 5 instance’s memory free.

	
lineWidth(seriesList, width)

	Takes one metric or a wildcard seriesList, followed by a float F.

Draw the selected metrics with a line width of F, overriding the default
value of 1, or the &lineWidth=X.X parameter.

Useful for highlighting a single metric out of many, or having multiple
line widths in one graph.

Example:

&target=lineWidth(server01.instance01.memory.free,5)

	
logarithm(seriesList, base=10)

	Takes one metric or a wildcard seriesList, a base, and draws the y-axis in logarithmic
format. If base is omitted, the function defaults to base 10.

Example:

&target=log(carbon.agents.hostname.avgUpdateTime,2)

	
lowestAverage(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the bottom N metrics with the lowest
average value for the time period specified.

Example:

&target=lowestAverage(server*.instance*.threads.busy,5)

Draws the bottom 5 servers with the lowest average value.

	
lowestCurrent(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the N metrics with the lowest value at
the end of the time period specified.

Example:

&target=lowestCurrent(server*.instance*.threads.busy,5)

Draws the 5 servers with the least busy threads right now.

	
maxSeries(*seriesLists)

	Takes one metric or a wildcard seriesList.
For each datapoint from each metric passed in, pick the maximum value and graph it.

Example:

&target=maxSeries(Server*.connections.total)

	
maximumAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a maximum value above n.

Example:

&target=maximumAbove(system.interface.eth*.packetsSent,1000)

This would only display interfaces which sent more than 1000 packets/min.

	
maximumBelow(seriesList, n)

	Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a maximum value below n.

Example:

&target=maximumBelow(system.interface.eth*.packetsSent,1000)

This would only display interfaces which sent less than 1000 packets/min.

	
minSeries(*seriesLists)

	Takes one metric or a wildcard seriesList.
For each datapoint from each metric passed in, pick the minimum value and graph it.

Example:

&target=minSeries(Server*.connections.total)

	
minimumAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a minimum value above n.

Example:

&target=minimumAbove(system.interface.eth*.packetsSent,1000)

This would only display interfaces which sent more than 1000 packets/min.

	
mostDeviant(n, seriesList)

	Takes an integer N followed by one metric or a wildcard seriesList.
Draws the N most deviant metrics.
To find the deviant, the average across all metrics passed is determined,
and then the average of each metric is compared to the overall average.

Example:

&target=mostDeviant(5, server*.instance*.memory.free)

Draws the 5 instances furthest from the average memory free.

	
movingAverage(seriesList, windowSize)

	Takes one metric or a wildcard seriesList followed by a number N of datapoints and graphs
the average of N previous datapoints. N-1 datapoints are set to None at the
beginning of the graph.

&target=movingAverage(Server.instance01.threads.busy,10)

	
movingMedian(seriesList, windowSize)

	Takes one metric or a wildcard seriesList followed by a number N of datapoints and graphs
the median of N previous datapoints. N-1 datapoints are set to None at the
beginning of the graph.

&target=movingMedian(Server.instance01.threads.busy,10)

	
multiplySeries(*seriesLists)

	Takes two or more series and multiplies their points. A constant may not be
used. To multiply by a constant, use the scale() function.

Example:

&target=multiplySeries(Series.dividends,Series.divisors)

	
nPercentile(seriesList, n)

	Returns n-percent of each series in the seriesList.

	
nonNegativeDerivative(seriesList, maxValue=None)

	Same as the derivative function above, but ignores datapoints that trend
down. Useful for counters that increase for a long time, then wrap or
reset. (Such as if a network interface is destroyed and recreated by unloading
and re-loading a kernel module, common with USB / WiFi cards.

Example:

&target=derivative(company.server.application01.ifconfig.TXPackets)

	
offset(seriesList, factor)

	Takes one metric or a wildcard seriesList followed by a constant, and adds the constant to
each datapoint.

Example:

&target=offset(Server.instance01.threads.busy,10)

	
percentileOfSeries(seriesList, n, interpolate=False)

	percentileOfSeries returns a single series which is composed of the n-percentile
values taken across a wildcard series at each point. Unless interpolate is
set to True, percentile values are actual values contained in one of the
supplied series.

	
randomWalkFunction(name)

	Short Alias: randomWalk()

Returns a random walk starting at 0. This is great for testing when there is
no real data in whisper.

Example:

&target=randomWalk("The.time.series")

This would create a series named “The.time.series” that contains points where
x(t) == x(t-1)+random()-0.5, and x(0) == 0.

	
rangeOfSeries(*seriesLists)

	Takes a wildcard seriesList.
Distills down a set of inputs into the range of the series

Example:

&target=rangeOfSeries(Server*.connections.total)

	
removeAbovePercentile(seriesList, n)

	Removes data above the nth percentile from the series or list of series provided.
Values below this percentile are assigned a value of None.

	
removeAboveValue(seriesList, n)

	Removes data above the given threshold from the series or list of series provided.
Values below this threshole are assigned a value of None

	
removeBelowPercentile(seriesList, n)

	Removes data above the nth percentile from the series or list of series provided.
Values below this percentile are assigned a value of None.

	
removeBelowValue(seriesList, n)

	Removes data above the given threshold from the series or list of series provided.
Values below this threshole are assigned a value of None

	
scale(seriesList, factor)

	Takes one metric or a wildcard seriesList followed by a constant, and multiplies the datapoint
by the constant provided at each point.

Example:

&target=scale(Server.instance01.threads.busy,10)
&target=scale(Server.instance*.threads.busy,10)

	
scaleToSeconds(seriesList, seconds)

	Takes one metric or a wildcard seriesList and returns “value per seconds” where
seconds is a last argument to this functions.

Useful in conjunction with derivative or integral function if you want
to normalize its result to a known resolution for arbitrary retentions

	
secondYAxis(seriesList)

	Graph the series on the secondary Y axis.

	
sinFunction(name, amplitude=1)

	Short Alias: sin()

Just returns the sine of the current time. The optional amplitude parameter
changes the amplitude of the wave.

Example:

&target=sin("The.time.series", 2)

This would create a series named “The.time.series” that contains sin(x)*2.

	
smartSummarize(seriesList, intervalString, func='sum', alignToFrom=False)

	Smarter experimental version of summarize.

The alignToFrom parameter has been deprecated, it no longer has any effect.
Alignment happens automatically for days, hours, and minutes.

	
sortByMaxima(seriesList)

	Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the maximum value across the time period
specified. Useful with the &areaMode=all parameter, to keep the
lowest value lines visible.

Example:

&target=sortByMaxima(server*.instance*.memory.free)

	
sortByMinima(seriesList)

	Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the lowest value across the time period
specified.

Example:

&target=sortByMinima(server*.instance*.memory.free)

	
stacked(seriesLists, stackName='__DEFAULT__')

	Takes one metric or a wildcard seriesList and change them so they are
stacked. This is a way of stacking just a couple of metrics without having
to use the stacked area mode (that stacks everything). By means of this a mixed
stacked and non stacked graph can be made

It can also take an optional argument with a name of the stack, in case there is
more than one, e.g. for input and output metrics.

Example:

&target=stacked(company.server.application01.ifconfig.TXPackets, 'tx')

	
stdev(seriesList, points, windowTolerance=0.1)

	Takes one metric or a wildcard seriesList followed by an integer N.
Draw the Standard Deviation of all metrics passed for the past N datapoints.
If the ratio of null points in the window is greater than windowTolerance,
skip the calculation. The default for windowTolerance is 0.1 (up to 10% of points
in the window can be missing). Note that if this is set to 0.0, it will cause large
gaps in the output anywhere a single point is missing.

Example:

&target=stdev(server*.instance*.threads.busy,30)
&target=stdev(server*.instance*.cpu.system,30,0.0)

	
substr(seriesList, start=0, stop=0)

	Takes one metric or a wildcard seriesList followed by 1 or 2 integers. Assume that the
metric name is a list or array, with each element separated by dots. Prints
n - length elements of the array (if only one integer n is passed) or n - m
elements of the array (if two integers n and m are passed). The list starts
with element 0 and ends with element (length - 1).

Example:

&target=substr(carbon.agents.hostname.avgUpdateTime,2,4)

The label would be printed as “hostname.avgUpdateTime”.

	
sumSeries(*seriesLists)

	Short form: sum()

This will add metrics together and return the sum at each datapoint. (See
integral for a sum over time)

Example:

&target=sum(company.server.application*.requestsHandled)

This would show the sum of all requests handled per minute (provided
requestsHandled are collected once a minute). If metrics with different
retention rates are combined, the coarsest metric is graphed, and the sum
of the other metrics is averaged for the metrics with finer retention rates.

	
sumSeriesWithWildcards(seriesList, *position)

	Call sumSeries after inserting wildcards at the given position(s).

Example:

&target=sumSeriesWithWildcards(host.cpu-[0-7].cpu-{user,system}.value, 1)

This would be the equivalent of
target=sumSeries(host.*.cpu-user.value)&target=sumSeries(host.*.cpu-system.value)

	
summarize(seriesList, intervalString, func='sum', alignToFrom=False)

	Summarize the data into interval buckets of a certain size.

By default, the contents of each interval bucket are summed together. This is
useful for counters where each increment represents a discrete event and
retrieving a “per X” value requires summing all the events in that interval.

Specifying ‘avg’ instead will return the mean for each bucket, which can be more
useful when the value is a gauge that represents a certain value in time.

‘max’, ‘min’ or ‘last’ can also be specified.

By default, buckets are caculated by rounding to the nearest interval. This
works well for intervals smaller than a day. For example, 22:32 will end up
in the bucket 22:00-23:00 when the interval=1hour.

Passing alignToFrom=true will instead create buckets starting at the from
time. In this case, the bucket for 22:32 depends on the from time. If
from=6:30 then the 1hour bucket for 22:32 is 22:30-23:30.

Example:

&target=summarize(counter.errors, "1hour") # total errors per hour
&target=summarize(nonNegativeDerivative(gauge.num_users), "1week") # new users per week
&target=summarize(queue.size, "1hour", "avg") # average queue size per hour
&target=summarize(queue.size, "1hour", "max") # maximum queue size during each hour
&target=summarize(metric, "13week", "avg", true)&from=midnight+20100101 # 2010 Q1-4

	
threshold(value, label=None, color=None)

	Takes a float F, followed by a label (in double quotes) and a color.
(See bgcolor in the render_api_ for valid color names & formats.)

Draws a horizontal line at value F across the graph.

Example:

&target=threshold(123.456, "omgwtfbbq", red)

	
timeFunction(name)

	Short Alias: time()

Just returns the timestamp for each X value. T

Example:

&target=time("The.time.series")

This would create a series named “The.time.series” that contains in Y the same
value (in seconds) as X.

	
timeShift(seriesList, timeShift)

	Takes one metric or a wildcard seriesList, followed by a quoted string with the
length of time (See from / until in the render_api_ for examples of time formats).

Draws the selected metrics shifted in time. If no sign is given, a minus sign (-) is
implied which will shift the metric back in time. If a plus sign (+) is given, the
metric will be shifted forward in time.

Useful for comparing a metric against itself at a past periods or correcting data
stored at an offset.

Example:

&target=timeShift(Sales.widgets.largeBlue,"7d")
&target=timeShift(Sales.widgets.largeBlue,"-7d")
&target=timeShift(Sales.widgets.largeBlue,"+1h")

	
transformNull(seriesList, default=0)

	Takes a metric or wild card seriesList and an optional value
to transform Nulls to. Default is 0. This method compliments
drawNullAsZero flag in graphical mode but also works in text only
mode.
Example:

&target=transformNull(webapp.pages.*.views,-1)

This would take any page that didn’t have values and supply negative 1 as a default.
Any other numeric value may be used as well.

	
useSeriesAbove(seriesList, value, search, replace)

	Compares the maximum of each series against the given value. If the series
maximum is greater than value, the regular expression search and replace is
applied against the series name to plot a related metric

e.g. given useSeriesAbove(ganglia.metric1.reqs,10,’reqs’,’time’),
the response time metric will be plotted only when the maximum value of the
corresponding request/s metric is > 10

&target=useSeriesAbove(ganglia.metric1.reqs,10,"reqs","time")

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

The Dashboard UI

...

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

The Whisper Database

Whisper is a fixed-size database, similar in design and purpose to RRD (round-robin-database). It
provides fast, reliable storage of numeric data over time. Whisper allows for higher resolution
(seconds per point) of recent data to degrade into lower resolutions for long-term retention of
historical data.

Data Points

Data points in Whisper are stored on-disk as big-endian double-precision floats. Each value is
paired with a timestamp in seconds since the UNIX Epoch (01-01-1970). The data value is parsed by the
Python float() [http://docs.python.org/library/functions.html#float] function and as such behaves
in the same way for special strings such as 'inf'. Maximum and minimum values are determined by
the Python interpreter’s allowable range for float values which can be found by executing:

python -c 'import sys; print sys.float_info'

Archives: Retention and Precision

Whisper databases contain one or more archives, each with a specific data resolution and
retention (defined in number of points or max timestamp age). Archives are ordered from the
highest-resolution and shortest retention archive to the lowest-resolution and longest retention period
archive.

To support accurate aggregation from higher to lower resolution archives, the number of points in a
longer retention archive must be divisible by its next lower retention archive. For example, an archive
with 1 data points every 60 seconds and retention of 120 points (2 hours worth of data) can have
a lower-resolution archive following it with a resolution of 1 data point every 300 seconds for 1200 points,
while the same resolution but for only 1000 points would be invalid since 1000 is not evenly divisible by
120.

The total retention time of the database is determined by the archive with the highest retention as the
time period covered by each archive is overlapping (see Multi-Archive Storage and Retrieval Behavior). That is, a pair of
archives with retentions of 1 month and 1 year will not provide 13 months of data storage. Instead,
it will provide 1 year of storage.

Rollup Aggregation

Whisper databases with more than a single archive need a strategy to collapse multiple data points for
when the data rolls up a lower precision archive. By default, an average function is used.
Available aggregation methods are:
* average
* sum
* last
* max
* min

Multi-Archive Storage and Retrieval Behavior

When Whisper writes to a database with multiple archives, the incoming data point is written to all
archives at once. The data point will be written to the lowest resolution archive as-is, and will be
aggregated by the configured aggregation method (see Rollup Aggregation) and placed into each
of the higher-retention archives.

When data is retrieved (scoped by a time range), the first archive which can satisfy the entire time
period is used. If the time period overlaps an archive boundary, the lower-resolution archive will be
used. This allows for a simpler behavior while retrieving data as the data’s resolution is consistent
through an entire returned series.

Disk Space Efficiency

Whisper is somewhat inefficient in its usage of disk space because of certain design choices:

	Each data point is stored with its timestamp

	Rather than a timestamp being inferred from its position in the archive, timestamps are stored with
each point. The timestamps are during data retrieval to check the validity of the data point. If a
timestamp does not match the expected value for its position relative to the beginning of the requested
series, it is known to be out of date and a null value is returned

	Archives overlap time periods

	During the write of a data point, Whisper stores the same data in all archives at once (see
Multi-Archive Storage and Retrieval Behavior). Implied by this behavior is that all archives store
from now until each of their retention times. Because of this, lower-resolution archives should be
configured to significantly lower resolution and higher retentions than their higher-resolution
counterparts so as to reduce the overlap.

	All time-slots within an archive take up space whether or not a value is stored

	While Whisper allows for reliable storage of irregular updates, it is most space efficient when data
points are stored at every update interval. This behavior is a consequence of the fixed-size design of
the database and allows the reading and writing of series data to be performed in a single contiguous
disk operation (for each archive in a database).

Differences Between Whisper and RRD

	RRD can not take updates to a time-slot prior to its most recent update

	This means that there is no way to back-fill data in an RRD series. Whisper does not have this
limitation, and this makes importing historical data into Graphite much more simple and easy

	RRD was not designed with irregular updates in mind

	In many cases (depending on configuration) if an update is made to an RRD series but is not
followed up by another update soon, the original update will be lost. This makes it less suitable
for recording data such as operational metrics (e.g. code pushes)

	Whisper requires that metric updates occur at the same interval as the finest resolution storage archive

	This pushes the onus of aggregating values to fit into the finest precision archive to the user rather
than the database. It also means that updates are written immediately into the finest precision archive
rather than being staged first for aggregation and written later (during a subsequent write operation)
as they are in RRD.

Performance

Whisper is fast enough for most purposes. It is slower than RRDtool primarily as a consequence of
Whisper being written in Python, while RRDtool is written in C. The speed difference between the
two in practice is quite small as much effort was spent to optimize Whisper to be as close to RRDtool’s
speed as possible. Testing has shown that update operations take anywhere from 2 to 3 times as long
as RRDtool, and fetch operations take anywhere from 2 to 5 times as long. In practice the actual
difference is measured in hundreds of microseconds (10^-4) which means less than a millisecond
difference for simple cases.

Database Format

	WhisperFile
	Header,Data
	
	
	

	
	Header
	Metadata,ArchiveInfo+
	
	

	
	
	Metadata
	aggregationType,maxRetention,xFilesFactor,archiveCount
	

	
	
	ArchiveInfo
	Offset,SecondsPerPoint,Points
	

	
	Data
	Archive+
	
	

	
	
	Archive
	Point+
	

	
	
	
	Point
	timestamp,value

Data types in Python’s struct format [http://docs.python.org/library/struct.html#format-strings]:

	Metadata
	!2LfL

	ArchiveInfo
	!3L

	Point
	!Ld

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Graphite Terminology

Graphite uses many terms that can have ambiguous meaning. The following definitions are what these
terms mean in the context of Graphite.

	datapoint

	A value stored at a timestamp bucket. If no value is recorded at a particular
timestamp bucket in a series, the value will be None (null).

	function

	A time-series function which transforms, combines, or performs computations on one or more series.
See Functions

	metric

	See series

	metric series

	See series

	precision

	See resolution

	resolution

	The number of seconds per datapoint in a series. Series are created with a resolution
which determines how often a datapoint may be stored. This resolution is represented
as the number of seconds in time that each datapoint covers. A series which stores one datapoint
per minute has a resolution of 60 seconds. Similarly, a series which stores one datapoint per
second has a resolution of 1 second.

	retention

	The number of datapoints retained in a series. Alternatively: The length of time datapoints
are stored in a series.

	series

	A named set of datapoints. A series is identified by a unique name, which is composed of
elements separated by periods (.) which are used to display the collection of series
into a heirarchical tree. A series storing system load average on a server called apache02
in datacenter metro_east might be named as metro_east.servers.apache02.system.load_average

	series list

	A series name or wildcard which matches one or more series. Series lists are received by
functions as a list of matching series. From a user perspective, a series list is
merely the name of a metric. For example, each of these would be considered a single series list:

	metro_east.servers.apache02.system.load_average.1_min,

	metro_east.servers.apache0{1,2,3}.system.load_average.1_min

	metro_east.servers.apache01.system.load_average.*

	target

	A source of data used as input for a Graph. A target can be a single metric name, a metric wildcard,
or either of these enclosed within one or more functions

	timestamp

	A point in time in which values can be associated. Time in Graphite is represented
as epoch time [http://en.wikipedia.org/wiki/Epoch_time] with a maximum resolution of 1-second.

	timestamp bucket

	A timestamp after rounding down to the nearest multiple of a series’s resolution.

	value

	A numeric or null value. Values are stored as double-precision floats. Values are parsed using
the python float() [http://docs.python.org/library/functions.html#float] constructor and can also be None (null). The range and precision of
values is system dependant and can be found by executing (with Python 2.6 or later)::
python -c ‘import sys; print sys.float_info’

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite 0.9.10 documentation

Tools That Work With Graphite

Bucky

Bucky [http://pypi.python.org/pypi/bucky] is a small service implemented in Python for collecting and translating metrics for Graphite.
It can current collect metric data from CollectD daemons and from StatsD clients.

collectd

collectd [http://collectd.org/] is a daemon which collects system performance statistics periodically and provides
mechanisms to store the values in a variety of ways, including RRD. To send collectd metrics into carbon/graphite, use:

	Jordan Sissel’s node collectd-to-graphite [https://github.com/loggly/collectd-to-graphite] proxy

	Joe Miller’s perl collectd-graphite [https://github.com/joemiller/collectd-graphite] plugin

	Gregory Szorc’s python collectd-carbon [https://github.com/indygreg/collectd-carbon] plugin

	Scott Sanders’s C collectd-write_graphite [https://github.com/jssjr/collectd-write_graphite] plugin

	Paul J. Davis’s Bucky [http://pypi.python.org/pypi/bucky] service

Graphite can also read directly from collectd [http://collectd.org/]‘s RRD files. RRD files can
simply be added to STORAGE_DIR/rrd (as long as directory names and files do not
contain any . characters). For example, collectd’s
host.name/load/load.rrd can be symlinked to rrd/collectd/host_name/load/load.rrd
to graph collectd.host_name.load.load.{short,mid,long}term.

Collectl

Collectl [http://collectl.sourceforge.net/] is a collection tool for system metrics that can be run both interactively and as a daemon
and has support for collecting from a broad set of subsystems. Collectl includes a Graphite interface
which allows data to easily be fed to Graphite for storage.

Charcoal

Charcoal [https://github.com/cebailey59/charcoal] is a simple Sinatra dashboarding frontend for Graphite or any other system status
service which can generate images directly from a URL. Charcoal configuration is driven by a YAML
config file.

Diamond

Diamond [http://opensource.brightcove.com/project/Diamond/] is a Python daemon that collects system metrics and publishes them to Graphite. It is
capable of collecting cpu, memory, network, I/O, load and disk metrics. Additionally, it features
an API for implementing custom collectors for gathering metrics from almost any source.

Ganglia

Ganglia [http://ganglia.info/] is a scalable distributed monitoring system for high-performance computing systems
such as clusters and Grids. It collects system performance metrics and stores them in RRD,
but now there is an
add-on [https://github.com/ganglia/ganglia_contrib/tree/master/graphite_integration/]
that allows Ganglia to send metrics directly to Graphite. Further integration work is underway.

GDash

Gdash [https://github.com/ripienaar/gdash.git] is a simple Graphite dashboard built using Twitters Bootstrap driven by a small DSL.

Graphene

Graphene [http://jondot.github.com/graphene/] is a Graphite dashboard toolkit based on D3.js [http://mbostock.github.com/d3/] and Backbone.js [http://documentcloud.github.com/backbone/] which was
made to offer a very aesthetic realtime dashboard. Graphene provides a solution capable of
displaying thousands upon thousands of datapoints all updated in realtime.

Graphite-relay

Graphite-relay [https://github.com/markchadwick/graphite-relay] is a fast Graphite relay written in Scala with the Netty framework.

Graphite-Tattle

Graphite-Tattle [https://github.com/wayfair/Graphite-Tattle] is a self-service dashboard frontend for Graphite and Ganglia [http://ganglia.info/].

Graphiti

Graphiti [https://github.com/paperlesspost/graphiti] is a powerful dashboard front end with a focus on ease of access, ease of recovery and
ease of tweaking and manipulation.

Graphitoid

Graphitoid [https://market.android.com/details?id=com.tnc.android.graphite] is an Android app which allows one to browse and display Graphite graphs
on an Android device.

Graphios

Graphios [https://github.com/shawn-sterling/graphios] is a small Python daemon to send Nagios performance data (perfdata) to Graphite.

Graphitejs

Graphitejs [https://github.com/prestontimmons/graphitejs] is a jQuery plugin for easily making and displaying graphs and updating them on
the fly using the Graphite URL api.

Grockets

Grockets [https://github.com/disqus/grockets] is a node.js application which provides streaming JSON data over HTTP from Graphite.

HoardD

HoardD [https://github.com/coredump/hoardd] is a Node.js app written in CoffeeScript to send data from servers to Graphite, much
like collectd does, but aimed at being easier to expand and with less footprint. It comes by
default with basic collectors plus Redis and MySQL metrics, and can be expanded with Javascript or
CoffeeScript.

Host sFlow

Host sFlow [http://host-sflow.sourceforge.net/] is an open source implementation of the sFlow protocol (http://www.sflow.org),
exporting a standard set of host cpu, memory, disk and network I/O metrics. The
sflow2graphite utility converts sFlow to Graphite’s plaintext
protocol, allowing Graphite to receive sFlow metrics.

hubot-scripts

Hubot [https://github.com/github/hubot] is a Campfire bot written in Node.js and CoffeeScript. The related hubot-scripts [https://github.com/github/hubot-scripts]
project includes a Graphite script which supports searching and displaying saved graphs from
the Composer directory in your Campfire rooms.

jmxtrans

jmxtrans [http://code.google.com/p/jmxtrans/] is a powerful tool that performs JMX queries to collect metrics from Java applications.
It is requires very little configuration and is capable of sending metric data to several
backend applications, including Graphite.

Logster

Logster [https://github.com/etsy/logster] is a utility for reading log files and generating metrics in Graphite or Ganglia.
It is ideal for visualizing trends of events that are occurring in your application/system/error
logs. For example, you might use logster to graph the number of occurrences of HTTP response
code that appears in your web server logs.

Pencil

Pencil [https://github.com/fetep/pencil] is a monitoring frontend for graphite. It runs a webserver that dishes out pretty Graphite
URLs in interesting and intuitive layouts.

Rocksteady

Rocksteady [http://code.google.com/p/rocksteady/] is a system that ties together Graphite, RabbitMQ [http://www.rabbitmq.com/], and Esper [http://esper.codehaus.org/]. Developed by
AdMob (who was then bought by Google), this was released by Google as open source
(http://google-opensource.blogspot.com/2010/09/get-ready-to-rocksteady.html).

Scales

Scales is a Python server state and statistics library that can output its data to Graphite.

Shinken

Shinken [http://www.shinken-monitoring.org/] is a system monitoring solution compatible with Nagios which emphasizes scalability, flexibility,
and ease of setup. Shinken provides complete integration with Graphite for processing and display of
performance data.

statsd

statsd [https://github.com/etsy/statsd] is a simple daemon for easy stats aggregation, developed by the folks at Etsy.
A list of forks and alternative implementations can be found at <http://joemiller.me/2011/09/21/list-of-statsd-server-implementations/>

Tasseo

Tasseo [https://github.com/obfuscurity/tasseo] is a lightweight, easily configurable, real-time dashboard for Graphite metrics.

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Graphite 0.9.10 documentation

Who is using Graphite?

Here are some organizations that use Graphite:

	Orbitz [http://www.orbitz.com/]

	Sears Holdings [http://www.sears.com/]

	Etsy [http://www.etsy.com/] (see http://codeascraft.etsy.com/2010/12/08/track-every-release/)

	Google [http://google-opensource.blogspot.com/2010/09/get-ready-to-rocksteady.html] (opensource Rocksteady project)

	Media Temple [http://mediatemple.net/]

	Canonical [http://www.canonical.com]

	Brightcove [http://www.brightcove.com] (see http://opensource.brightcove.com/project/Diamond/)

And many more

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	Graphite 0.9.10 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 graphite	

 	
 	
 graphite.render.functions	

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 Navigation

 	
 index

 	
 modules |

 	Graphite 0.9.10 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	absolute() (in module graphite.render.functions)

 	alias() (in module graphite.render.functions)

 	aliasByMetric() (in module graphite.render.functions)

 	aliasByNode() (in module graphite.render.functions)

 	aliasSub() (in module graphite.render.functions)

 	alpha() (in module graphite.render.functions)

 	

 	areaBetween() (in module graphite.render.functions)

 	asPercent() (in module graphite.render.functions)

 	averageAbove() (in module graphite.render.functions)

 	averageBelow() (in module graphite.render.functions)

 	averageSeries() (in module graphite.render.functions)

 	averageSeriesWithWildcards() (in module graphite.render.functions)

C

 	

 	cactiStyle() (in module graphite.render.functions)

 	color() (in module graphite.render.functions)

 	constantLine() (in module graphite.render.functions)

 	

 	cumulative() (in module graphite.render.functions)

 	currentAbove() (in module graphite.render.functions)

 	currentBelow() (in module graphite.render.functions)

D

 	

 	dashed() (in module graphite.render.functions)

 	datapoint

 	derivative() (in module graphite.render.functions)

 	

 	diffSeries() (in module graphite.render.functions)

 	divideSeries() (in module graphite.render.functions)

 	drawAsInfinite() (in module graphite.render.functions)

E

 	

 	events() (in module graphite.render.functions)

 	

 	exclude() (in module graphite.render.functions)

F

 	

 	function

G

 	

 	graphite.render.functions (module)

 	group() (in module graphite.render.functions)

 	

 	groupByNode() (in module graphite.render.functions)

H

 	

 	highestAverage() (in module graphite.render.functions)

 	highestCurrent() (in module graphite.render.functions)

 	highestMax() (in module graphite.render.functions)

 	hitcount() (in module graphite.render.functions)

 	

 	holtWintersAberration() (in module graphite.render.functions)

 	holtWintersConfidenceArea() (in module graphite.render.functions)

 	holtWintersConfidenceBands() (in module graphite.render.functions)

 	holtWintersForecast() (in module graphite.render.functions)

I

 	

 	integral() (in module graphite.render.functions)

K

 	

 	keepLastValue() (in module graphite.render.functions)

L

 	

 	legendValue() (in module graphite.render.functions)

 	limit() (in module graphite.render.functions)

 	lineWidth() (in module graphite.render.functions)

 	

 	logarithm() (in module graphite.render.functions)

 	lowestAverage() (in module graphite.render.functions)

 	lowestCurrent() (in module graphite.render.functions)

M

 	

 	maximumAbove() (in module graphite.render.functions)

 	maximumBelow() (in module graphite.render.functions)

 	maxSeries() (in module graphite.render.functions)

 	metric

 	metric series

 	minimumAbove() (in module graphite.render.functions)

 	

 	minSeries() (in module graphite.render.functions)

 	mostDeviant() (in module graphite.render.functions)

 	movingAverage() (in module graphite.render.functions)

 	movingMedian() (in module graphite.render.functions)

 	multiplySeries() (in module graphite.render.functions)

N

 	

 	nonNegativeDerivative() (in module graphite.render.functions)

 	

 	nPercentile() (in module graphite.render.functions)

O

 	

 	offset() (in module graphite.render.functions)

P

 	

 	percentileOfSeries() (in module graphite.render.functions)

 	

 	precision

R

 	

 	randomWalkFunction() (in module graphite.render.functions)

 	rangeOfSeries() (in module graphite.render.functions)

 	removeAbovePercentile() (in module graphite.render.functions)

 	removeAboveValue() (in module graphite.render.functions)

 	

 	removeBelowPercentile() (in module graphite.render.functions)

 	removeBelowValue() (in module graphite.render.functions)

 	resolution

 	retention

S

 	

 	scale() (in module graphite.render.functions)

 	scaleToSeconds() (in module graphite.render.functions)

 	secondYAxis() (in module graphite.render.functions)

 	series

 	series list

 	sinFunction() (in module graphite.render.functions)

 	smartSummarize() (in module graphite.render.functions)

 	sortByMaxima() (in module graphite.render.functions)

 	

 	sortByMinima() (in module graphite.render.functions)

 	stacked() (in module graphite.render.functions)

 	stdev() (in module graphite.render.functions)

 	substr() (in module graphite.render.functions)

 	summarize() (in module graphite.render.functions)

 	sumSeries() (in module graphite.render.functions)

 	sumSeriesWithWildcards() (in module graphite.render.functions)

T

 	

 	target

 	threshold() (in module graphite.render.functions)

 	timeFunction() (in module graphite.render.functions)

 	timeShift() (in module graphite.render.functions)

 	

 	timestamp

 	timestamp bucket

 	transformNull() (in module graphite.render.functions)

U

 	

 	useSeriesAbove() (in module graphite.render.functions)

V

 	

 	value

 Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.9.x

 	0.9.10

 	0.9.9

 config-local-settings.html

 Navigation

 		
 index

 		
 modules |

 		Graphite 0.9.10 documentation »

Graphite-web’s local_settings.py

Graphite-web uses the convention of importing a local_settings.py file from the webapp
settings.py module. This is where Graphite-web’s runtime configuration is loaded from.

Config File Location

local_settings.py is generally located within the main graphite module where the
webapp’s code lives. In the default installation layout this
is /opt/graphite/webapp/graphite/local_settings.py. Alternative locations can be used by
symlinking to this path or by ensuring the module can be found within the Python module search
path.

General Settings

		TIME_ZONE

		Default: America/Chicago

Set your local timezone. Timezone is specifed using
zoneinfo names [http://en.wikipedia.org/wiki/Zoneinfo#Names_of_time_zones].

		DOCUMENTATION_URL

		Default: http://graphite.readthedocs.org/

Overrides the Documentation link used in the header of the Graphite Composer

		LOG_RENDERING_PERFORMANCE

		Default: False

Triggers the creation of rendering.log which logs timings for calls to the The Render URL API

		LOG_CACHE_PERFORMANCE

		Default: False

Triggers the creation of cache.log which logs timings for remote calls to carbon-cache as
well as Request Cache (memcached) hits and misses.

		LOG_METRIC_ACCESS

		Default: False

Trigges the creation of metricaccess.log which logs access to Whisper and RRD data files

		DEBUG = True

		Default: False

Enables generation of detailed Django error pages. See Django’s documentation [https://docs.djangoproject.com/en/dev/ref/settings/#debug] for details

		FLUSHRRDCACHED

		Default: <unset>

If set, executes rrdtool flushcached before fetching data from RRD files. Set to the address
or socket of the rrdcached daemon. Ex: unix:/var/run/rrdcached.sock

		MEMCACHE_HOSTS

		Default: []

If set, enables the caching of calculated targets (including applied functions) and rendered images. If running
a cluster of Graphite webapps, each webapp should have the exact same values for this setting to prevent unneeded
cache misses.

Set this to the list of memcached hosts. Ex: ['10.10.10.10:11211', '10.10.10.11:11211', '10.10.10.12:11211']

		DEFAULT_CACHE_DURATION

		Default: 60

Default expiration of cached data and images.

Filesystem Paths

These settings configure the location of Graphite-web’s additional configuration files, static content,
and data. These need to be adjusted if Graphite-web is installed outside of the
default installation layout.

		GRAPHITE_ROOT

		Default: /opt/graphite
The base directory for the Graphite install. This setting is used to shift the Graphite install
from the default base directory which keeping the default layout.
The paths derived from this setting can be individually overridden as well

		CONF_DIR

		Default: GRAPHITE_ROOT/conf
The location of additional Graphite-web configuration files

		STORAGE_DIR

		Default: GRAPHITE_ROOT/storage
The base directory from which WHISPER_DIR, RRD_DIR, LOG_DIR, and INDEX_FILE default paths
are referenced

		CONTENT_DIR

		Default: See below
The location of Graphite-web’s static content. This defaults to content/ two parent
directories up from settings.py. In the default layout
this is /opt/graphite/webapp/content

		DASHBOARD_CONF

		Default: CONF_DIR/dashboard.conf
The location of the Graphite-web Dashboard configuration

		GRAPHTEMPLATES_CONF

		Default: CONF_DIR/graphTemplates.conf
The location of the Graphite-web Graph Template configuration

		WHISPER_DIR

		Default: /opt/graphite/storage/whisper
The location of Whisper data files

		RRD_DIR

		Default: /opt/graphite/storage/rrd
The location of RRD data files

		DATA_DIRS

		Default: [WHISPER_DIR, RRD_DIR]
The list of directories searched for data files. By default, this is the value of WHISPER_DIR
and RRD_DIR (if rrd support is detected). If this setting is defined, the WHISPER_DIR and RRD_DIR
settings have no effect.

		LOG_DIR

		Default: STORAGE_DIR/log/webapp
The directory to write Graphite-web’s log files. This directory must be writable by the user
running the Graphite-web webapp

		INDEX_FILE

		Default: /opt/graphite/storage/index
The location of the search index file. This file is generated by the build-index.sh script and
must be writable by the user running the Graphite-web webap

Email Configuration

These settings configure Django’s email functionality which is used for emailing rendered graphs.
See the Django documentation [https://docs.djangoproject.com/en/dev/topics/email/] for
further detail on these settings

		EMAIL_BACKEND

		Default: django.core.mail.backends.smtp.EmailBackend
Set to django.core.mail.backends.dummy.EmailBackend to drop emails on the floor and effectively
disable email features.

		EMAIL_HOST

		Default: localhost

		EMAIL_PORT

		Default: 25

		EMAIL_HOST_USER

		Default: ‘’

		EMAIL_HOST_PASSWORD

		Default: ‘’

		EMAIL_USE_TLS

		Default: False

Authentication Configuration

These settings insert additional backends to the
AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/dev/ref/settings/#authentication-backends]
and MIDDLEWARE_CLASSES [https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-MIDDLEWARE_CLASSES] settings. Additional authentication schemes are possible by manipulating these lists directly.

LDAP

These settings configure a custom LDAP authentication backend provided by Graphite. Additional
settings to the ones below are configurable setting the LDAP module’s global options using
ldap.set_option. See the module documentation [http://python-ldap.org/] for more details.

SSL Example
import ldap
ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_ALLOW)
ldap.set_option(ldap.OPT_X_TLS_CACERTDIR, "/etc/ssl/ca")
ldap.set_option(ldap.OPT_X_TLS_CERTFILE, "/etc/ssl/mycert.pem")
ldap.set_option(ldap.OPT_X_TLS_KEYFILE, "/etc/ssl/mykey.pem")

		USE_LDAP_AUTH

		Default: False

		LDAP_SERVER

		Default: ‘’

Set the LDAP server here or alternativly in LDAP_URL

		LDAP_PORT

		Default: 389

Set the LDAP server port here or alternativly in LDAP_URL

		LDAP_URI

		Default: None

Sets the LDAP server URI. E.g. ldaps://ldap.mycompany.com:636

		LDAP_SEARCH_BASE

		Default: ‘’

Sets the LDAP search base. E.g. OU=users,DC=mycompany,DC=com

		LDAP_BASE_USER

		Default: ‘’

Sets the base LDAP user to bind to the server with. E.g.
CN=some_readonly_account,DC=mycompany,DC=com

		LDAP_BASE_PASS

		Default: ‘’

Sets the password of the base LDAP user to bind to the server with.

		LDAP_USER_QUERY

		Default: ‘’

Sets the LDAP query to return a user object where %s substituted with the
user id. E.g. (username=%s) or (sAMAccountName=%s) (Active Directory)

Other Authentications

		REMOTE_USER_AUTHENTICATION

		Default: False

Enables the use of the Django RemoteUserBackend authentication backend. See the
Django documentation [https://docs.djangoproject.com/en/dev/howto/auth-remote-user/] for
further details

		LOGIN_URL

		Default: /account/login

Modifies the URL linked in the Login link in the Composer interface. This is useful
for directing users to an external authentication link such as for Remote User authentication
or a backend such as django_openid_auth [https://launchpad.net/django-openid-auth]

Database Configuration

The following configures the Django database settings. Graphite uses the database for storing user
profiles, dashboards, and for the Events functionality. Graphite uses an Sqlite database file located
at STORAGE_DIR/graphite.db by default. If running multiple Graphite-web instances, a database
such as PostgreSQL or MySQL is required so that all instances may share the same data source.

Note

As of Django 1.2, the database configuration is specified by the DATABASES dictionary.
For compatibility with Django 1.1, Graphite’s default Sqlite database configuration still uses the
old method. This means that users running under Django 1.4 will not have a working default.
In any case, it is recommended that all users on Django 1.2 or above explicitly specify a database
configuration using the new format

See the
Django documentation [https://docs.djangoproject.com/en/dev/ref/settings/#databases]
for full documentation of the DATABASE setting. Users on Django 1.1 will require setting the
deprecated DATABASE_* settings outlined in the Django 1.1 documentation [https://docs.djangoproject.com/en/1.1/ref/settings/#database-engine]

Note

Remember, setting up a new database requires running manage.py syncdb to create the initial
schema

Cluster Configuration

These settings configure the Graphite webapp for clustered use. When CLUSTER_SERVERS is set,
metric browse and render requests will cause the webapp to query other webapps in CLUSTER_SERVERS for
matching metrics. Graphite will use only one successfully matching response to render data. This means
that metrics may only live on a single server in the cluster unless the data is consistent on both
sources (e.g. with shared SAN storage). Duplicate metric data existing in multiple locations will
not be combined.

		CLUSTER_SERVERS

		Default: []

The list of IP addresses and ports of remote Graphite webapps in a cluster. Each of these servers
should have local access to metric data to serve. The first server to return a match for a query
will be used to serve that data. Ex: [“10.0.2.2:80”, “10.0.2.3:80”]

		REMOTE_STORE_FETCH_TIMEOUT

		Default: 6

Timeout for remote data fetches in seconds

		REMOTE_STORE_FIND_TIMEOUT

		Default: 2.5

Timeout for remote find requests (metric browsing) in seconds

		REMOTE_STORE_RETRY_DELAY

		Default: 60

Time in seconds to blacklist a webapp after a timed-out request

		REMOTE_FIND_CACHE_DURATION

		Default: 300

Time to cache remote metric find results in seconds

		REMOTE_RENDERING

		Default: False

Enable remote rendering of images and data (JSON, et al.) on remote Graphite webapps. If this
is enabled, RENDERING_HOSTS must be configured below

		RENDERING_HOSTS

		Default: []

List of IP addresses and ports of remote Graphite webapps used to perform rendering. Each webapp
must have access to the same data as the Graphite webapp which uses this setting either through
shared local storage or via CLUSTER_SERVERS. Ex: [“10.0.2.4:80”, “10.0.2.5:80”]

		REMOTE_RENDER_CONNECT_TIMEOUT

		Default: 1.0

Connection timeout for remote rendering requests in seconds

		CARBONLINK_HOSTS

		Default: [127.0.0.1:7002]

If multiple carbon-caches are running on this machine, each should be listed here so that the Graphite
webapp may query the caches for data that has not yet been persisted. Remote carbon-cache instances in a
multi-host clustered setup should not be listed here. Instance names should be listed
as applicable. Ex: [‘127.0.0.1:7002:a’,‘127.0.0.1:7102:b’, ‘127.0.0.1:7202:c’]

		CARBONLINK_TIMEOUT

		Default: 1.0

Timeout for carbon-cache cache queries in seconds

Additional Django Settings

The local_settings.py.example shipped with Graphite-web imports app_settings.py into the
namespace to allow further customization of Django. This allows the setting or customization of
standard Django settings [https://docs.djangoproject.com/en/dev/ref/settings/] and the installation
and configuration of additional middleware [https://docs.djangoproject.com/en/dev/topics/http/middleware/].
To manipulate these settings, ensure app_settings.py is imported as such:

from graphite.app_settings import *

The most common settings to manipulate are INSTALLED_APPS, MIDDLEWARE_CLASSES, and AUTHENTICATION_BACKENDS

 © Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.9.x

 		0.9.10

 		0.9.9

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Graphite 0.9.10 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.9.x

 		0.9.10

 		0.9.9

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

admin-carbon.html

 Navigation

 		
 index

 		
 modules |

 		Graphite 0.9.10 documentation »

Administering Carbon

Starting Carbon

Carbon can be started with the carbon-cache.py script:

/opt/graphite/bin/carbon-cache.py start

This starts the main Carbon daemon in the background. Now is a good time
to check the logs, located in /opt/graphite/storage/log/carbon-cache/
for any errors.

 © Copyright 2011, Chris Davis.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.9.x

 		0.9.10

 		0.9.9

_static/down-pressed.png

