
Graphite Documentation
Release 0.9.10

Chris Davis

August 14, 2013

CONTENTS

1 Overview 1
1.1 About the project . 1
1.2 The architecture in a nutshell . 1

2 Installing Graphite 3
2.1 Dependencies . 3
2.2 Fulfilling Dependencies . 4
2.3 Default Installation Layout . 4
2.4 Installing Graphite . 5
2.5 Initial Configuration . 8
2.6 Help! It didn’t work! . 8
2.7 Post-Install Tasks . 9

3 The Carbon Daemons 11
3.1 carbon-cache.py . 11
3.2 carbon-relay.py . 11
3.3 carbon-aggregator.py . 12

4 Configuring Carbon 13
4.1 carbon.conf . 13
4.2 storage-schemas.conf . 13
4.3 storage-aggregation.conf . 15
4.4 relay-rules.conf . 15
4.5 aggregation-rules.conf . 16
4.6 whitelist and blacklist . 16

5 Feeding In Your Data 17
5.1 The plaintext protocol . 17
5.2 The pickle protocol . 17
5.3 Using AMQP . 18

6 Configuring The Webapp 19

7 Administering The Webapp 21

8 Using The Composer 23

9 The Render URL API 25
9.1 Graphing Metrics . 25
9.2 Data Display Formats . 27

i

9.3 Graph Parameters . 29

10 Functions 41
10.1 Usage . 41
10.2 List of functions . 41

11 The Dashboard UI 53

12 The Whisper Database 55
12.1 Data Points . 55
12.2 Archives: Retention and Precision . 55
12.3 Rollup Aggregation . 55
12.4 Multi-Archive Storage and Retrieval Behavior . 56
12.5 Disk Space Efficiency . 56
12.6 Differences Between Whisper and RRD . 56
12.7 Performance . 56
12.8 Database Format . 57

13 Graphite Terminology 59

14 Tools That Work With Graphite 61
14.1 Bucky . 61
14.2 collectd . 61
14.3 Collectl . 61
14.4 Charcoal . 61
14.5 Diamond . 62
14.6 Ganglia . 62
14.7 GDash . 62
14.8 Graphene . 62
14.9 Graphite-relay . 62
14.10 Graphite-Tattle . 62
14.11 Graphiti . 62
14.12 Graphitoid . 62
14.13 Graphios . 63
14.14 Graphitejs . 63
14.15 Grockets . 63
14.16 HoardD . 63
14.17 Host sFlow . 63
14.18 hubot-scripts . 63
14.19 jmxtrans . 63
14.20 Logster . 63
14.21 Pencil . 64
14.22 Rocksteady . 64
14.23 Scales . 64
14.24 Shinken . 64
14.25 statsd . 64
14.26 Tasseo . 64

15 Who is using Graphite? 65

16 Indices and tables 67

Python Module Index 69

ii

CHAPTER

ONE

OVERVIEW

Graphite does two things:

1. Store numeric time-series data

2. Render graphs of this data on demand

What Graphite does not do is collect data for you, however there are some tools out there that know how to send data
to graphite. Even though it often requires a little code, sending data to Graphite is very simple.

1.1 About the project

Graphite is an enterprise-scale monitoring tool that runs well on cheap hardware. It was originally designed and written
by Chris Davis at Orbitz in 2006 as side project that ultimately grew to be a foundational monitoring tool. In 2008,
Orbitz allowed Graphite to be released under the open source Apache 2.0 license. Since then Chris has continued to
work on Graphite and has deployed it at other companies including Sears, where it serves as a pillar of the e-commerce
monitoring system. Today many large companies use it.

1.2 The architecture in a nutshell

Graphite consists of 3 software components:

1. carbon - a Twisted daemon that listens for time-series data

2. whisper - a simple database library for storing time-series data (similar in design to RRD)

3. graphite webapp - A Django webapp that renders graphs on-demand using Cairo

Feeding in your data is pretty easy, typically most of the effort is in collecting the data to begin with. As you send
datapoints to Carbon, they become immediately available for graphing in the webapp. The webapp offers several ways
to create and display graphs including a simple URL API for rendering that makes it easy to embed graphs in other
webpages.

1

mailto:chrismd@gmail.com
http://www.orbitz.com/
http://www.sears.com/
http://www.twistedmatrix.com/
http://oss.oetiker.ch/rrdtool/
http://www.djangoproject.com/
http://www.cairographics.org/

Graphite Documentation, Release 0.9.10

2 Chapter 1. Overview

CHAPTER

TWO

INSTALLING GRAPHITE

2.1 Dependencies

Graphite renders graphs using the Cairo graphics library. This adds dependencies on several graphics-related libraries
not typically found on a server. If you’re installing from source you can use the check-dependencies.py script
to see if the dependencies have been met or not.

Basic Graphite requirements:

• Python 2.4 or greater (2.6+ recommended)

• Pycairo

• Django 1.0 or greater

• django-tagging 0.3.1 or greater

• Twisted 8.0 or greater (10.0+ recommended)

• zope-interface (often included in Twisted package dependency)

• fontconfig and at least one font package (a system package usually)

• A WSGI server and web server. Popular choices are: - Apache with mod_wsgi and mod_python - gunicorn with
nginx - uWSGI with nginx

Python 2.4 and 2.5 have extra requirements:

• simplejson

• python-sqlite2 or another Django-supported database module

Additionally, the Graphite webapp and Carbon require the whisper database library which is part of the Graphite
project.

There are also several other dependencies required for additional features:

• Render caching: memcached and python-memcache

• LDAP authentication: python-ldap (for LDAP authentication support in the webapp)

• AMQP support: txamqp

• RRD support: python-rrdtool

• Dependant modules for additional database support (MySQL, PostgreSQL, etc). See Django database install
instructions and the Django database documentation for details

3

http://www.cairographics.org/pycairo/
http://www.djangoproject.com/
http://code.google.com/p/django-tagging/
http://twistedmatrix.com/
http://pypi.python.org/pypi/zope.interface/
http://www.freedesktop.org/wiki/Software/fontconfig/
http://projects.apache.org/projects/http_server.html
http://code.google.com/p/modwsgi/
http://www.modpython.org/
http://gunicorn.org/
http://nginx.org/
http://projects.unbit.it/uwsgi/
http://nginx.org/
http://pypi.python.org/pypi/simplejson/
http://code.google.com/p/pysqlite/
http://memcached.org/
http://www.tummy.com/Community/software/python-memcached/
http://www.python-ldap.org/
https://launchpad.net/txamqp/
http://oss.oetiker.ch/rrdtool/prog/rrdpython.en.html
https://docs.djangoproject.com/en/dev/topics/install/#get-your-database-running
https://docs.djangoproject.com/en/dev/ref/databases/

Graphite Documentation, Release 0.9.10

See Also:

On some systems it is necessary to install fonts for Cairo to use. If the webapp is running but all graphs return as
broken images, this may be why.

• https://answers.launchpad.net/graphite/+question/38833

• https://answers.launchpad.net/graphite/+question/133390

• https://answers.launchpad.net/graphite/+question/127623

2.2 Fulfilling Dependencies

Most current Linux distributions have all of the requirements available in the base packages. RHEL based distributions
may require the EPEL repository for requirements. Python module dependencies can be install with pip rather than
system packages if desired or if using a Python version that differs from the system default. Some modules (such as
Cairo) may require library development headers to be available.

2.3 Default Installation Layout

Graphite defaults to an installation layout that puts the entire install in its own directory: /opt/graphite

2.3.1 Whisper

Whisper is installed Python’s system-wide site-packages directory with Whisper’s utilities installed in the bin dir of
the system’s default prefix (generally /usr/bin/).

2.3.2 Carbon and Graphite-web

Carbon and Graphite-web are installed in /opt/graphite/ with the following layout:

• bin/

• conf/

• lib/

Carbon PYTHONPATH

• storage/

– log

Log directory for Carbon and Graphite-web

– rrd

Location for RRD files to be read

– whisper

Location for Whisper data files to be stored and read

• webapp/

Graphite-web PYTHONPATH

4 Chapter 2. Installing Graphite

https://answers.launchpad.net/graphite/+question/38833
https://answers.launchpad.net/graphite/+question/133390
https://answers.launchpad.net/graphite/+question/127623
http://fedoraproject.org/wiki/EPEL/
http://www.pip-installer.org/

Graphite Documentation, Release 0.9.10

– graphite/

Location of manage.py and local_settings.py

– content/

Graphite-web static content directory

2.4 Installing Graphite

Several installation options exist:

2.4.1 Installing From Source

The latest source tarballs for Graphite-web, Carbon, and Whisper may be fetched from the Graphite project download
page or the latest development branches may be cloned from the Github project page:

• Graphite-web: git clone https://github.com/graphite-project/graphite-web.git

• Carbon: git clone https://github.com/graphite-project/carbon.git

• Whisper: git clone https://github.com/graphite-project/whisper.git

Installing in the Default Location

To install Graphite in the default location, /opt/graphite/, simply execute python setup.py install as
root in each of the project directories for Graphite-web, Carbon, and Whisper.

Installing Carbon in a Custom Location

Carbon’s setup.py installer is configured to use a prefix of /opt/graphite and an install-lib of
/opt/graphite/lib. Carbon’s lifecycle wrapper scripts and utilities are installed in bin, configuration within
conf, and stored data in storage all within prefix. These may be overridden by passing parameters to the
setup.py install command.

The following parameters influence the install location:

• --prefix

Location to place the bin/ and storage/ and conf/ directories (defaults to /opt/graphite/)

• --install-lib

Location to install Python modules (default: /opt/graphite/lib)

• --install-data

Location to place the storage and conf directories (default: value of prefix)

• --install-scripts

Location to place the scripts (default: bin/ inside of prefix)

For example, to install everything in /srv/graphite/:

python setup.py install --prefix=/srv/graphite --install-lib=/srv/graphite/lib

2.4. Installing Graphite 5

https://launchpad.net/graphite/+download
https://launchpad.net/graphite/+download
http://github.com/graphite-project

Graphite Documentation, Release 0.9.10

To install Carbon into the system-wide site-packages directory with scripts in /usr/bin and storage and configura-
tion in /usr/share/graphite:

python setup.py install --install-scripts=/usr/bin --install-lib=/usr/lib/python2.6/site-packages --install-data=/var/lib/graphite

Installing Graphite-web in a Custom Location

Graphite-web’s setup.py installer is configured to use a prefix of /opt/graphite and an install-lib of
/opt/graphite/webapp. Utilities are installed in bin, and configuration in conf within the prefix. These
may be overridden by passing parameters to setup.py install

The following parameters influence the install location:

• --prefix

Location to place the bin/ and conf/ directories (defaults to /opt/graphite/)

• --install-lib

Location to install Python modules (default: /opt/graphite/webapp)

• --install-data

Location to place the webapp/content and conf directories (default: value of prefix)

• --install-scripts

Location to place scripts (default: bin/ inside of prefix)

For example, to install everything in /srv/graphite/:

python setup.py install --prefix=/srv/graphite --install-lib=/srv/graphite/webapp

To install the Graphite-web code into the system-wide site-packages directory with scripts in /usr/bin and storage
configuration, and content in /usr/share/graphite:

python setup.py install --install-scripts=/usr/bin --install-lib=/usr/lib/python2.6/site-packages --install-data=/var/lib/graphite

2.4.2 Installing From Pip

Versioned Graphite releases can be installed via pip. When installing with pip, Installation of dependencies will
automatically be attempted.

Installing in the Default Location

To install Graphite in the default location, /opt/graphite/, simply execute as root:

pip install whisper
pip install carbon
pip install graphite-web

Note: On RedHat-based systems using the python-pip package, the pip executable is named pip-python

6 Chapter 2. Installing Graphite

http://pypi.python.org/pypi/pip

Graphite Documentation, Release 0.9.10

Installing Carbon in a Custom Location

Installation of Carbon in a custom location with pip is similar to doing so from a source install. Arguments to the
underlying setup.py controlling installation location can be passed through pip with the --install-option
option.

See Installing Carbon in a Custom Location for details of locations and available arguments

For example, to install everything in /srv/graphite/:

pip install carbon --install-option="--prefix=/srv/graphite" --install-option="--install-lib=/srv/graphite/lib"

To install Carbon into the system-wide site-packages directory with scripts in /usr/bin and storage and configura-
tion in /usr/share/graphite:

pip install carbon --install-option="--install-scripts=/usr/bin" --install-option="--install-lib=/usr/lib/python2.6/site-packages" --install-option="--install-data=/var/lib/graphite"

Installing Graphite-web in a Custom Location

Installation of Graphite-web in a custom location with pip is similar to doing so from a source install. Arguments to the
underlying setup.py controlling installation location can be passed through pip with the --install-option
option.

See Installing Graphite-web in a Custom Location for details on default locations and available arguments

For example, to install everything in /srv/graphite/:

pip install graphite-web --install-option="--prefix=/srv/graphite" --install-option="--install-lib=/srv/graphite/webapp"

To install the Graphite-web code into the system-wide site-packages directory with scripts in /usr/bin and storage
configuration, and content in /usr/share/graphite:

pip install graphite-web --install-option="--install-scripts=/usr/bin" install-option="--install-lib=/usr/lib/python2.6/site-packages" --install-option="--install-data=/var/lib/graphite"

2.4.3 Installing in Virtualenv

Virtualenv provides an isolated Python environment to run Graphite in.

Installing in the Default Location

To install Graphite in the default location, /opt/graphite/, create a virtualenv in /opt/graphite and activate
it:

virtualenv /opt/graphite
source /opt/graphite/bin/activate

Once the virtualenv is activated, Graphite and Carbon can be installed from source or via pip. Note that dependencies
will need to be installed while the virtualenv is activated unless –system-site-packages is specified at virtualenv creation
time.

Installing in a Custom Location

To install from source activate the virtualenv and see the instructions for graphite-web and carbon

2.4. Installing Graphite 7

http://virtualenv.org/
http://www.virtualenv.org/en/latest/index.html#the-system-site-packages-option

Graphite Documentation, Release 0.9.10

Running Carbon Within Virtualenv

Carbon may be run within Virtualenv by activating virtualenv before Carbon is started

Running Graphite-web Within Virtualenv

Running Django’s manage.py within virtualenv requires activating virtualenv before executing as normal.

The method of running Graphite-web within Virtualenv depends on the WSGI server used:

Apache mod_wsgi

Note: The version Python used to compile mod_wsgi must match the Python installed in the virtualenv (generally
the system Python)

To the Apache mod_wsgi config, add the root of the virtualenv as WSGIPythonHome, /opt/graphite in this
example:

WSGIPythonHome /opt/graphite

and add the virtualenv’s python site-packages to the graphite.wsgi file, python 2.6 in /opt/graphite in this
example:

site.addsitedir(’/opt/graphite/lib/python2.6/site-packages’)

See the mod_wsgi documentation on Virtual Environments <http://code.google.com/p/modwsgi/wiki/VirtualEnvironments>
for more details.

Gunicorn

Ensure Gunicorn is installed in the activated virtualenv and execute as normal. If gunicorn is installed system-wide, it
may be necessary to execute it from the virtualenv’s bin path

uWSGI

Execute uWSGI using the -H option to specify the virtualenv root. See the uWSGI documentation on virtualenv for
more details.

2.5 Initial Configuration

2.6 Help! It didn’t work!

If you run into any issues with Graphite, please to post a question to our Questions forum on Launchpad or join us on
IRC in #graphite on FreeNode

8 Chapter 2. Installing Graphite

http://www.virtualenv.org/en/latest/index.html#activate-script
http://www.virtualenv.org/en/latest/index.html#activate-script
http://code.google.com/p/modwsgi/
http://gunicorn.org/
http://projects.unbit.it/uwsgi
http://projects.unbit.it/uwsgi/wiki/VirtualEnv
https://answers.launchpad.net/graphite

Graphite Documentation, Release 0.9.10

2.7 Post-Install Tasks

Configuring Carbon Once you’ve installed everything you will need to create some basic configuration. Initially
none of the config files are created by the installer but example files are provided. Simply copy the .example
files and customize.

Administering Carbon Once Carbon is configured, you need to start it up.

Feeding In Your Data Once it’s up and running, you need to feed it some data.

Configuring The Webapp With data getting into carbon, you probably want to look at graphs of it. So now we turn
our attention to the webapp.

Administering The Webapp Once its configured you’ll need to get it running.

Using the Composer Now that the webapp is running, you probably want to learn how to use it.

2.7. Post-Install Tasks 9

Graphite Documentation, Release 0.9.10

10 Chapter 2. Installing Graphite

CHAPTER

THREE

THE CARBON DAEMONS

When we talk about “Carbon” we mean one or more of various daemons that make up the storage backend of a Graphite
installation. In simple installations, there is typically only one daemon, carbon-cache.py. This document gives
a brief overview of what each daemon does and how you can use them to build a more sophisticated storage backend.

All of the carbon daemons listen for time-series data and can accept it over a common set of protocols. However, they
differ in what they do with the data once they receive it.

3.1 carbon-cache.py

carbon-cache.py accepts metrics over various protocols and writes them to disk as efficiently as possible. This
requires caching metric values in RAM as they are received, and flushing them to disk on an interval using the under-
lying whisper library.

carbon-cache.py requires some basic configuration files to run:

carbon.conf The [cache] section tells carbon-cache.py what ports (2003/2004/7002), protocols (newline
delimited, pickle) and transports (TCP/UDP) to listen on.

storage-schemas.conf Defines a retention policy for incoming metrics based on regex patterns. This policy is passed
to whisper when the .wsp file is pre-allocated, and dictates how long data is stored for.

As the number of incoming metrics increases, one carbon-cache.py instance may not be enough to handle the
I/O load. To scale out, simply run multiple carbon-cache.py instances (on one or more machines) behind a
carbon-aggregator.py or carbon-relay.py.

3.2 carbon-relay.py

carbon-relay.py serves two distinct purposes: replication and sharding.

When running with RELAY_METHOD = rules, a carbon-relay.py instance can run in place of a
carbon-cache.py server and relay all incoming metrics to multiple backend carbon-cache.py‘s running
on different ports or hosts.

In RELAY_METHOD = consistent-hashing mode, a CH_HOST_LIST setting defines a sharding strategy
across multiple carbon-cache.py backends. The same consistent hashing list can be provided to the graphite
webapp via CARBONLINK_HOSTS to spread reads across the multiple backends.

carbon-relay.py is configured via:

carbon.conf The [relay] section defines listener host/ports and a RELAY_METHOD

11

Graphite Documentation, Release 0.9.10

relay-rules.conf In RELAY_METHOD = rules, pattern/servers tuples define what servers metrics matching certain
regex rules are forwarded to.

3.3 carbon-aggregator.py

carbon-aggregator.py can be run in front of carbon-cache.py to buffer metrics over time before reporting
them into whisper. This is useful when granular reporting is not required, and can help reduce I/O load and whisper
file sizes due to lower retention policies.

carbon-aggregator.py is configured via:

carbon.conf The [aggregator] section defines listener and destination host/ports.

aggregation-rules.conf Defines a time interval (in seconds) and aggregation function (sum or average) for incoming
metrics matching a certain pattern. At the end of each interval, the values received are aggregated and published
to carbon-cache.py as a single metric.

12 Chapter 3. The Carbon Daemons

CHAPTER

FOUR

CONFIGURING CARBON

Carbon’s config files all live in /opt/graphite/conf/. If you’ve just installed Graphite, none of the .conf files
will exist yet, but there will be a .conf.example file for each one. Simply copy the example files, removing the
.example extension, and customize your settings.

4.1 carbon.conf

This is the main config file, and defines the settings for each Carbon daemon.

Each setting within this file is documented via comments in the config file itself. The settings are broken down
into sections for each daemon - carbon-cache is controlled by the [cache] section, carbon-relay is controlled by
[relay] and carbon-aggregator by [aggregator]. However, if this is your first time using Graphite, don’t worry
about anything but the [cache] section for now.

Tip: Carbon-cache and carbon-relay can run on the same host! Try swapping the default ports listed for
LINE_RECEIVER_PORT and PICKLE_RECEIVER_PORT between the [cache] and [relay] sections to pre-
vent having to reconfigure your deployed metric senders. When setting DESTINATIONS in the [relay] section,
keep in mind your newly-set PICKLE_RECEIVER_PORT in the [cache] section.

4.2 storage-schemas.conf

This configuration file details retention rates for storing metrics. It matches metric paths to patterns, and tells whisper
what frequency and history of datapoints to store.

Important notes before continuing:

• There can be many sections in this file.

• The sections are applied in order from the top (first) and bottom (last).

• The patterns are regular expressions, as opposed to the wildcards used in the URL API.

• The first pattern that matches the metric name is used.

• This retention is set at the time the first metric is sent.

• Changing this file will not affect already-created .wsp files. Use whisper-resize.py to change those.

A given rule is made up of 3 lines:

• A name, specified inside square brackets.

13

Graphite Documentation, Release 0.9.10

• A regex, specified after “pattern=”

• A retention rate line, specified after “retentions=”

The retentions line can specify multiple retentions. Each retention of frequency:history is separated by a
comma.

Frequencies and histories are specified using the following suffixes:

• s - second

• m - minute

• h - hour

• d - day

• y - year

Here’s a simple, single retention example:

[garbage_collection]
pattern = garbageCollections$
retentions = 10s:14d

The name [garbage_collection] is mainly for documentation purposes, and will show up in creates.log
when metrics matching this section are created.

The regular expression pattern will match any metric that ends with garbageCollections. For ex-
ample, com.acmeCorp.instance01.jvm.memory.garbageCollections would match, but
com.acmeCorp.instance01.jvm.memory.garbageCollections.full would not.

The retention line is saying that each datapoint represents 10 seconds, and we want to keep enough datapoints so that
they add up to 14 days of data.

Here’s a more complicated example with multiple retention rates:

[apache_busyWorkers]
pattern = ^servers\.www.*\.workers\.busyWorkers$
retentions = 15s:7d,1m:21d,15m:5y

In this example, imagine that your metric scheme is servers.<servername>.<metrics>. The pattern would
match server names that start with ‘www’, followed by anything, that are sending metrics that end in ‘.work-
ers.busyWorkers’ (note the escaped ‘.’ characters).

Additionally, this example uses multiple retentions. The general rule is to specify retentions from most-precise:least-
history to least-precise:most-history – whisper will properly downsample metrics (averaging by default) as thresholds
for retention are crossed.

By using multiple retentions, you can store long histories of metrics while saving on disk space and I/O. Because
whisper averages (by default) as it downsamples, one is able to determine totals of metrics by reversing the averaging
process later on down the road.

Example: You store the number of sales per minute for 1 year, and the sales per hour for 5 years after that. You need
to know the total sales for January 1st of the year before. You can query whisper for the raw data, and you’ll get 24
datapoints, one for each hour. They will most likely be floating point numbers. You can take each datapoint, multiply
by 60 (the ratio of high-precision to low-precision datapoints) and still get the total sales per hour.

Additionally, whisper supports a legacy retention specification for backwards compatibility reasons -
seconds-per-datapoint:count-of-datapoints

retentions = 60:1440

14 Chapter 4. Configuring Carbon

Graphite Documentation, Release 0.9.10

60 represents the number of seconds per datapoint, and 1440 represents the number of datapoints to store. This
required some unnecessarily complicated math, so although it’s valid, it’s not recommended.

4.3 storage-aggregation.conf

This file defines how to aggregate data to lower-precision retentions. The format is similar to
storage-schemas.conf. Important notes before continuing:

• This file is optional. If it is not present, defaults will be used.

• There is no retentions line. Instead, there are xFilesFactor and/or aggregationMethod lines.

• xFilesFactor should be a floating point number between 0 and 1, and specifies what fraction of the previous
retention level’s slots must have non-null values in order to aggregate to a non-null value. The default is 0.5.

• aggregationMethod specifies the function used to aggregate values for the next retention level. Legal
methods are average, sum, min, max, and last. The default is average.

• These are set at the time the first metric is sent.

• Changing this file will not affect .wsp files already created on disk. Use whisper-resize.py to change those.

Here’s an example:

[all_min]
pattern = \.min$
xFilesFactor = 0.1
aggregationMethod = min

The pattern above will match any metric that ends with .min.

The xFilesFactor line is saying that a minimum of 10% of the slots in the previous retention level must have
values for next retention level to contain an aggregate. The aggregationMethod line is saying that the aggregate
function to use is min.

If either xFilesFactor or aggregationMethod is left out, the default value will be used.

The aggregation parameters are kept separate from the retention parameters because the former depends on the type
of data being collected and the latter depends on volume and importance.

4.4 relay-rules.conf

Relay rules are used to send certain metrics to a certain backend. This is handled by the carbon-relay system. It must
be running for relaying to work. You can use a regular expression to select the metrics and define the servers to which
they should go with the servers line.

Example:

[example]
pattern = ^mydata\.foo\..+
servers = 10.1.2.3, 10.1.2.4:2004, myserver.mydomain.com

You must define at least one section as the default.

4.3. storage-aggregation.conf 15

Graphite Documentation, Release 0.9.10

4.5 aggregation-rules.conf

Aggregation rules allow you to add several metrics together as the come in, reducing the need to sum() many metrics
in every URL. Note that unlike some other config files, any time this file is modified it will take effect automatically.
This requires the carbon-aggregator service to be running.

The form of each line in this file should be as follows:

output_template (frequency) = method input_pattern

This will capture any received metrics that match ‘input_pattern’ for calculating an aggregate metric. The calculation
will occur every ‘frequency’ seconds and the ‘method’ can specify ‘sum’ or ‘avg’. The name of the aggregate metric
will be derived from ‘output_template’ filling in any captured fields from ‘input_pattern’.

For example, if your metric naming scheme is:

<env>.applications.<app>.<server>.<metric>

You could configure some aggregations like so:

<env>.applications.<app>.all.requests (60) = sum <env>.applications.<app>.*.requests
<env>.applications.<app>.all.latency (60) = avg <env>.applications.<app>.*.latency

As an example, if the following metrics are received:

prod.applications.apache.www01.requests
prod.applications.apache.www02.requests
prod.applications.apache.www03.requests
prod.applications.apache.www04.requests
prod.applications.apache.www05.requests

They would all go into the same aggregation buffer and after 60 seconds the aggregate metric
‘prod.applications.apache.all.requests’ would be calculated by summing their values.

4.6 whitelist and blacklist

The whitelist functionality allows any of the carbon daemons to only accept metrics that are explicitly whitelisted
and/or to reject blacklisted metrics. The functionality can be enabled in carbon.conf with the USE_WHITELIST flag.
This can be useful when too many metrics are being sent to a Graphite instance or when there are metric senders
sending useless or invalid metrics.

GRAPHITE_CONF_DIR is searched for whitelist.conf and blacklist.conf. Each file contains one regu-
lar expressions per line to match against metric values. If the whitelist configuration is missing or empty, all metrics
will be passed through by default.

16 Chapter 4. Configuring Carbon

CHAPTER

FIVE

FEEDING IN YOUR DATA

Getting your data into Graphite is very flexible. There are three main methods for sending data to Graphite: Plaintext,
Pickle, and AMQP.

It’s worth noting that data sent to Graphite is actually sent to the Carbon and Carbon-Relay, which then manage the
data. The Graphite web interface reads this data back out, either from cache or straight off disk.

Choosing the right transfer method for you is dependent on how you want to build your application or script to send
data:

• For a singular script, or for test data, the plaintext protocol is the most straightforward method.

• For sending large amounts of data, you’ll want to batch this data up and send it to Carbon’s pickle receiver.

• Finally, Carbon can listen to a message bus, via AMQP.

5.1 The plaintext protocol

The plaintext protocol is the most straightforward protocol supported by Carbon.

The data sent must be in the following format: <metric path> <metric value> <metric timestamp>.
Carbon will then help translate this line of text into a metric that the web interface and Whisper understand.

On Unix, the nc program can be used to create a socket and send data to Carbon (by default, ‘plaintext’ runs on port
2003):

PORT=2003
SERVER=graphite.your.org
echo "local.random.diceroll 4 ‘date +%s‘" | nc ${SERVER} ${PORT};

5.2 The pickle protocol

The pickle protocol is a much more efficient take on the plaintext protocol, and supports sending batches of metrics to
Carbon in one go.

The general idea is that the pickled data forms a list of multi-level tuples:

[(path, (timestamp, value)), ...]

Once you’ve formed a list of sufficient size (don’t go too big!), send the data over a socket to Carbon’s pickle receiver
(by default, port 2004). You’ll need to pack your pickled data into a packet containing a simple header:

17

Graphite Documentation, Release 0.9.10

payload = pickle.dumps(listOfMetricTuples)
header = struct.pack("!L", len(payload))
message = header + payload

You would then send the message object through a network socket.

5.3 Using AMQP

...

18 Chapter 5. Feeding In Your Data

CHAPTER

SIX

CONFIGURING THE WEBAPP

19

Graphite Documentation, Release 0.9.10

20 Chapter 6. Configuring The Webapp

CHAPTER

SEVEN

ADMINISTERING THE WEBAPP

21

Graphite Documentation, Release 0.9.10

22 Chapter 7. Administering The Webapp

CHAPTER

EIGHT

USING THE COMPOSER

...

23

Graphite Documentation, Release 0.9.10

24 Chapter 8. Using The Composer

CHAPTER

NINE

THE RENDER URL API

The graphite webapp provides a /render endpoint for generating graphs and retreiving raw data. This endpoint
accepts various arguments via query string parameters. These parameters are separated by an ampersand (&) and are
supplied in the format:

&name=value

To verify that the api is running and able to generate images, open
http://GRAPHITE_HOST:GRAPHITE_PORT/render in a browser. The api should return a simple 330x250
image with the text “No Data”.

Once the api is running and you’ve begun feeding data into carbon, use the parameters below to customize your graphs
and pull out raw data. For example:

single server load on large graph
http://graphite/render?target=server.web1.load&height=800&width=600

average load across web machines over last 12 hours
http://graphite/render?target=averageSeries(server.web*.load)&from=-12hours

number of registered users over past day as raw json data
http://graphite/render?target=app.numUsers&format=json

rate of new signups per minute
http://graphite/render?target=summarize(deriviative(app.numUsers),"1min")&title=New_Users_Per_Minute

Note: Most of the functions and parameters are case sensitive. For example &linewidth=2 will fail silently. The
correct parameter in this case is &lineWidth=2

9.1 Graphing Metrics

To begin graphing specific metrics, pass one or more target parameters and specify a time window for the graph via
from / until.

9.1.1 target

This will draw one or more metrics

Example:

25

Graphite Documentation, Release 0.9.10

&target=company.server05.applicationInstance04.requestsHandled
(draws one metric)

Let’s say there are 4 identical application instances running on each server.

&target=company.server05.applicationInstance*.requestsHandled
(draws 4 metrics / lines)

Now let’s say you have 10 servers.

&target=company.server*.applicationInstance*.requestsHandled
(draws 40 metrics / lines)

You can also run any number of functions on the various metrics before graphing.

&target=averageSeries(company.server*.applicationInstance.requestsHandled)
(draws 1 aggregate line)

The target param can also be repeated to graph multiple related metrics.

&target=company.server1.loadAvg&target=company.server1.memUsage

Note: If more than 10 metrics are drawn the legend is no longer displayed. See the hideLegend parameter for details.

9.1.2 from / until

These are optional parameters that specify the relative or absolute time period to graph. from specifies the beginning,
until specifies the end. If from is omitted, it defaults to 24 hours ago. If until is omitted, it defaults to the current
time (now).

There are multiple formats for these functions:

&from=-RELATIVE_TIME
&from=ABSOLUTE_TIME

RELATIVE_TIME is a length of time since the current time. It is always preceded my a minus sign (-) and follow
by a unit of time. Valid units of time:

Abbreviation Unit
s Seconds
min Minutes
h Hours
d Days
w Weeks
mon 30 Days (month)
y 365 Days (year)

ABSOLUTE_TIME is in the format HH:MM_YYMMDD, YYYYMMDD, MM/DD/YY, or any other at(1)-
compatible time format.

Abbreviation Meaning
HH Hours, in 24h clock format. Times before 12PM must include leading zeroes.
MM Minutes
YYYY 4 Digit Year.
MM Numeric month representation with leading zero
DD Day of month with leading zero

26 Chapter 9. The Render URL API

Graphite Documentation, Release 0.9.10

&from and &until can mix absolute and relative time if desired.

Examples:

&from=-8d&until=-7d
(shows same day last week)

&from=04:00_20110501&until=16:00_20110501
(shows 4AM-4PM on May 1st, 2011)

&from=20091201&until=20091231
(shows December 2009)

&from=noon+yesterday
(shows data since 12:00pm on the previous day)

&from=6pm+today
(shows data since 6:00pm on the same day)

&from=january+1
(shows data since the beginning of the current year)

&from=monday
(show data since the previous monday)

9.2 Data Display Formats

Along with rendering an image, the api can also generate SVG with embedded metadata or return the raw data in
various formats for external graphing, analysis or monitoring.

9.2.1 format

Controls the format of data returned. Affects all &targets passed in the URL.

Examples:

&format=png
&format=raw
&format=csv
&format=json
&format=svg

png

Renders the graph as a PNG image of size determined by width and height

raw

Renders the data in a custom line-delimited format. Targets are output one per line and are of the format <target
name>,<start timestamp>,<end timestamp>,<series step>|[data]*

entries,1311836008,1311836013,1|1.0,2.0,3.0,5.0,6.0

9.2. Data Display Formats 27

http://www.w3.org/Graphics/SVG/

Graphite Documentation, Release 0.9.10

csv

Renders the data in a CSV format suitable for import into a spreadsheet or for processing in a script

entries,2011-07-28 01:53:28,1.0
entries,2011-07-28 01:53:29,2.0
entries,2011-07-28 01:53:30,3.0
entries,2011-07-28 01:53:31,5.0
entries,2011-07-28 01:53:32,6.0

json

Renders the data as a json object. The jsonp option can be used to wrap this data in a named call for cross-domain
access

[{
"target": "entries",
"datapoints": [
[1.0, 1311836008],
[2.0, 1311836009],
[3.0, 1311836010],
[5.0, 1311836011],
[6.0, 1311836012]

]
}]

svg

Renders the graph as SVG markup of size determined by width and height. Metadata about the drawn graph is saved
as an embedded script with the variable metadata being set to an object describing the graph

<script>
<![CDATA[
metadata = {

"area": {
"xmin": 39.195507812499997,
"ymin": 33.96875,
"ymax": 623.794921875,
"xmax": 1122

},
"series": [

{
"start": 1335398400,
"step": 1800,
"end": 1335425400,
"name": "summarize(test.data, \"30min\", \"sum\")",
"color": "#859900",
"data": [null, null, 1.0, null, 1.0, null, 1.0, null, 1.0, null, 1.0, null, null, null, null],
"options": {},
"valuesPerPoint": 1

}
],
"y": {

"labelValues": [0, 0.25, 0.5, 0.75, 1.0],
"top": 1.0,
"labels": ["0 ", "0.25 ", "0.50 ", "0.75 ", "1.00 "],

28 Chapter 9. The Render URL API

Graphite Documentation, Release 0.9.10

"step": 0.25,
"bottom": 0

},
"x": {

"start": 1335398400,
"end": 1335423600

},
"font": {

"bold": false,
"name": "Sans",
"italic": false,
"size": 10

},
"options": {

"lineWidth": 1.2
}

}
]]>

</script>

pickle

Returns a Python pickle (serialized Python object). The response will have the MIME type ‘application/pickle’. The
pickled object is a list of dictionaries with the keys: name, start, end, step, and values as below:

[
{
’name’ : ’summarize(test.data, "30min", "sum")’,
’start’: 1335398400,
’end’ : 1335425400,
’step’ : 1800,
’values’ : [None, None, 1.0, None, 1.0, None, 1.0, None, 1.0, None, 1.0, None, None, None, None],

}
]

9.2.2 rawData

Deprecated since version 0.9.9. Used to get numerical data out of the webapp instead of an image. Can be set to true,
false, csv. Affects all &targets passed in the URL.

Example:

&target=carbon.agents.graphiteServer01.cpuUsage&from=-5min&rawData=true

Returns the following text:

carbon.agents.graphiteServer01.cpuUsage,1306217160,1306217460,60|0.0,0.00666666520965,0.00666666624282,0.0,0.0133345399694

9.3 Graph Parameters

9.3.1 areaAlpha

Default: 1.0

9.3. Graph Parameters 29

http://docs.python.org/library/pickle.html

Graphite Documentation, Release 0.9.10

Takes a floating point number between 0.0 and 1.0 Sets the alpha (transparency) value of filled areas when using an
areaMode

9.3.2 areaMode

Default: none

Enables filling of the area below the graphed lines. Fill area is the same color as the line color associated with it. See
areaAlpha to make this area transparent. Takes one of the following parameters which determines the fill mode to use:

none Disables areaMode

first Fills the area under the first target and no other

all Fills the areas under each target

stacked Creates a graph where the filled area of each target is stacked on one another. Each target line is displayed
as the sum of all previous lines plus the value of the current line.

9.3.3 bgcolor

Default: value from the [default] template in graphTemplates.conf

Sets the background color of the graph.

Color Names RGB Value
black 0,0,0
white 255,255,255
blue 100,100,255
green 0,200,0
red 200,0,50
yellow 255,255,0
orange 255, 165, 0
purple 200,100,255
brown 150,100,50
aqua 0,150,150
gray 175,175,175
grey 175,175,175
magenta 255,0,255
pink 255,100,100
gold 200,200,0
rose 200,150,200
darkblue 0,0,255
darkgreen 0,255,0
darkred 255,0,0
darkgray 111,111,111
darkgrey 111,111,111

RGB can be passed directly in the format #RRGGBB where RR, GG, and BB are 2-digit hex vaules for red, green and
blue, respectively.

Examples:

&bgcolor=blue
&bgcolor=#2222FF

30 Chapter 9. The Render URL API

Graphite Documentation, Release 0.9.10

9.3.4 cacheTimeout

Default: The value of DEFAULT_CACHE_DURATION from local_settings.py

The time in seconds for the rendered graph to be cached (only relevant if memcached is configured)

9.3.5 colorList

Default: value from the [default] template in graphTemplates.conf

Takes one or more comma-separated color names or RGB values (see bgcolor for a list of color names) and uses that
list in order as the colors of the lines. If more lines / metrics are drawn than colors passed, the list is reused in order.

Example:

&colorList=green,yellow,orange,red,purple,#DECAFF

9.3.6 drawNullAsZero

Default: false

Converts any None (null) values in the displayed metrics to zero at render time.

9.3.7 fgcolor

Default: value from the [default] template in graphTemplates.conf

Sets the foreground color. This only affects the title, legend text, and axis labels.

See majorGridLineColor, and minorGridLineColor for further control of colors.

See bgcolor for a list of color names and details on formatting this parameter.

9.3.8 fontBold

Default: value from the [default] template in graphTemplates.conf

If set to true, makes the font bold.

Example:

&fontBold=true

9.3.9 fontItalic

Default: value from the [default] template in graphTemplates.conf

If set to true, makes the font italic / oblique. Default is false.

Example:

&fontItalic=true

9.3. Graph Parameters 31

Graphite Documentation, Release 0.9.10

9.3.10 fontName

Default: value from the [default] template in graphTemplates.conf

Change the font used to render text on the graph. The font must be installed on the Graphite Server.

Example:

&fontName=FreeMono

9.3.11 fontSize

Default: value from the [default] template in graphTemplates.conf

Changes the font size. Must be passed a positive floating point number or integer equal to or greater than 1. Default is
10

Example:

&fontSize=8

9.3.12 format

See: Data Display Formats

9.3.13 from

See: from / until

9.3.14 graphOnly

Default: False

Display only the graph area with no grid lines, axes, or legend

9.3.15 graphTypes

Default: line

Sets the type of graph to be rendered. Currently there are only two graph types:

line A line graph displaying metrics as lines over time

pie A pie graph with each slice displaying an aggregate of each metric calculated using the function specified by
pieMode

9.3.16 hideLegend

Default: <unset>

If set to true, the legend is not drawn. If set to false, the legend is drawn. If unset, the LEGEND_MAX_ITEMS
settings in local_settings.py is used to determine whether or not to display the legend.

Hint: If set to false the &height parameter may need to be increased to accommodate the additional text.

32 Chapter 9. The Render URL API

Graphite Documentation, Release 0.9.10

Example:

&hideLegend=false

9.3.17 hideAxes

Default: False

If set to true the X and Y axes will not be rendered Example:

&hideAxes=true

9.3.18 hideYAxis

Default: False

If set to true the Y Axis will not be rendered

9.3.19 hideGrid

Default: False

If set to true the grid lines will not be rendered

Example:

&hideGrid=true

9.3.20 height

Default: 250

Sets the height of the generated graph image in pixels.

See also: width

Example:

&width=650&height=250

9.3.21 jsonp

Default: <unset>

If set and combined with format=json, wraps the JSON response in a function call named by the parameter
specified.

9.3.22 leftColor

Default: color chosen from colorList

In dual Y-axis mode, sets the color of all metrics associated with the left Y-axis.

9.3. Graph Parameters 33

Graphite Documentation, Release 0.9.10

9.3.23 leftDashed

Default: False

In dual Y-axis mode, draws all metrics associated with the left Y-axis using dashed lines

9.3.24 leftWidth

Default: value of the parameter lineWidth

In dual Y-axis mode, sets the line width of all metrics associated with the left Y-axis

9.3.25 lineMode

Default: slope

Sets the line drawing behavior. Takes one of the following parameters:

slope Slope line mode draws a line from each point to the next. Periods will Null values will not be drawn

staircase Staircase draws a flat line for the duration of a time period and then a vertical line up or down to the
next value

connected Like a slope line, but values are always connected with a slope line, regardless of whether or not there
are Null values between them

Example:

&lineMode=staircase

9.3.26 lineWidth

Default: 1.2

Takes any floating point or integer (negative numbers do not error but will cause no line to be drawn). Changes the
width of the line in pixels.

Example:

&lineWidth=2

9.3.27 logBase

Default: <unset>

If set, draws the graph with a logarithmic scale of the specified base (e.g. 10 for common logarithm)

9.3.28 localOnly

Default: False

Set to prevent fetching from remote Graphite servers, only returning metrics which are accessible locally

34 Chapter 9. The Render URL API

Graphite Documentation, Release 0.9.10

9.3.29 majorGridLineColor

Default: value from the [default] template in graphTemplates.conf

Sets the color of the major grid lines.

See bgcolor for valid color names and formats.

Example:

&majorGridLineColor=#FF22FF

9.3.30 margin

Default: 10 Sets the margin around a graph image in pixels on all sides.

Example:

&margin=20

9.3.31 max

Deprecated since version 0.9.0: See yMax

9.3.32 minorGridLineColor

Default: value from the [default] template in graphTemplates.conf

Sets the color of the minor grid lines.

See bgcolor for valid color names and formats.

Example:

&minorGridLineColor=darkgrey

9.3.33 minorY

Sets the number of minor grid lines per major line on the y-axis.

Example:

&minorY=3

9.3.34 min

Deprecated since version 0.9.0: See yMin

9.3. Graph Parameters 35

Graphite Documentation, Release 0.9.10

9.3.35 minXStep

Default: 1

Sets the minimum pixel-step to use between datapoints drawn. Any value below this will trigger a point consolidation
of the series at render time. The default value of 1 combined with the default lineWidth of 1.2 will cause a minimal
amount of line overlap between close-together points. To disable render-time point consolidation entirely, set this to 0
though note that series with more points than there are pixels in the graph area (e.g. a few month’s worth of per-minute
data) will look very ‘smooshed’ as there will be a good deal of line overlap. In response, one may use lineWidth to
compensate for this.

9.3.36 noCache

Default: False

Set to disable caching of rendered images

9.3.37 pickle

Deprecated since version 0.9.10: See Data Display Formats

9.3.38 pieMode

Default: average

The type of aggregation to use to calculate slices of a pie when graphType=pie. One of:

average The average of non-null points in the series

maximum The maximum of non-null points in the series

minimum THe minimum of non-null points in the series

9.3.39 rightColor

Default: color chosen from colorList

In dual Y-axis mode, sets the color of all metrics associated with the right Y-axis.

9.3.40 rightDashed

Default: False

In dual Y-axis mode, draws all metrics associated with the right Y-axis using dashed lines

9.3.41 rightWidth

Default: value of the parameter lineWidth

In dual Y-axis mode, sets the line width of all metrics associated with the right Y-axis

36 Chapter 9. The Render URL API

Graphite Documentation, Release 0.9.10

9.3.42 template

Default: default

Used to specify a template from graphTemplates.conf to use for default colors and graph styles.

Example:

&template=plain

9.3.43 thickness

Deprecated since version 0.9.0: See: lineWidth

9.3.44 title

Default: <unset>

Puts a title at the top of the graph, center aligned. If unset, no title is displayed.

Example:

&title=Apache Busy Threads, All Servers, Past 24h

9.3.45 tz

Default: The timezone specified in local_settings.py

Time zone to convert all times into.

Examples:

&tz=America/Los_Angeles
&tz=UTC

Note: To change the default timezone, edit webapp/graphite/local_settings.py.

9.3.46 uniqueLegend

Default: False

Display only unique legend items, removing any duplicates

9.3.47 until

See: from / until

9.3. Graph Parameters 37

Graphite Documentation, Release 0.9.10

9.3.48 vtitle

Default: <unset>

Labels the y-axis with vertical text. If unset, no y-axis label is displayed.

Example:

&vtitle=Threads

9.3.49 vtitleRight

Default: <unset>

In dual Y-axis mode, sets the title of the right Y-Axis (See: vtitle)

9.3.50 width

Default: 330

Sets the width of the generated graph image in pixels.

See also: height

Example:

&width=650&height=250

9.3.51 xFormat

Default: Determined automatically based on the time-width of the X axis

Sets the time format used when displaying the X-axis. See datetime.date.strftime() for format specification details.

9.3.52 yAxisSide

Default: left

Sets the side of the graph on which to render the Y-axis. Accepts values of left or right

9.3.53 yLimit

Reserved for future use See: yMax

9.3.54 yLimitLeft

Reserved for future use See: yMaxLeft

9.3.55 yLimitRight

Reserved for future use See: yMaxRight

38 Chapter 9. The Render URL API

http://docs.python.org/library/datetime.html#datetime.date.strftime

Graphite Documentation, Release 0.9.10

9.3.56 yMin

Default: The lowest value of any of the series displayed

Manually sets the lower bound of the graph. Can be passed any integer or floating point number.

Example:

&yMin=0

9.3.57 yMax

Default: The highest value of any of the series displayed

Manually sets the upper bound of the graph. Can be passed any integer or floating point number.

Example:

&yMax=0.2345

9.3.58 yMaxLeft

In dual Y-axis mode, sets the upper bound of the left Y-Axis (See: yMax)

9.3.59 yMaxRight

In dual Y-axis mode, sets the upper bound of the right Y-Axis (See: yMax)

9.3.60 yMinLeft

In dual Y-axis mode, sets the lower bound of the left Y-Axis (See: yMin)

9.3.61 yMinRight

In dual Y-axis mode, sets the lower bound of the right Y-Axis (See: yMin)

9.3.62 yStep

Default: Calculated automatically

Manually set the value step between Y-axis labels and grid lines

9.3.63 yStepLeft

In dual Y-axis mode, Manually set the value step between the left Y-axis labels and grid lines (See: yStep)

9.3.64 yStepRight

In dual Y-axis mode, Manually set the value step between the right Y-axis labels and grid lines (See: yStep)

9.3. Graph Parameters 39

Graphite Documentation, Release 0.9.10

9.3.65 yUnitSystem

Default: si

Set the unit system for compacting Y-axis values (e.g. 23,000,000 becomes 23M). Value can be one of:

si Use si units (powers of 1000) - K, M, G, T, P

binary Use binary units (powers of 1024) - Ki, Mi, Gi, Ti, Pi

none Dont compact values, display the raw number

40 Chapter 9. The Render URL API

CHAPTER

TEN

FUNCTIONS

Functions are used to transform, combine, and perform computations on series data. Functions are applied using the
Composer interface or by manipulating the target parameters in the Render API.

10.1 Usage

Most functions are applied to one series list. Functions with the parameter *seriesLists can take an arbitrary
number of series lists. To pass multiple series lists to a function which only takes one, use the group() function.

10.2 List of functions

absolute(seriesList)
Takes one metric or a wildcard seriesList and applies the mathematical abs function to each datapoint transform-
ing it to its absolute value.

Example:

&target=absolute(Server.instance01.threads.busy)
&target=absolute(Server.instance*.threads.busy)

alias(seriesList, newName)
Takes one metric or a wildcard seriesList and a string in quotes. Prints the string instead of the metric name in
the legend.

&target=alias(Sales.widgets.largeBlue,"Large Blue Widgets")

aliasByMetric(seriesList)
Takes a seriesList and applies an alias derived from the base metric name.

&target=aliasByMetric(carbon.agents.graphite.creates)

aliasByNode(seriesList, *nodes)
Takes a seriesList and applies an alias derived from one or more “node” portion/s of the target name. Node
indices are 0 indexed.

&target=aliasByNode(ganglia.*.cpu.load5,1)

aliasSub(seriesList, search, replace)
Runs series names through a regex search/replace.

41

Graphite Documentation, Release 0.9.10

&target=aliasSub(ip.*TCP*,"^.*TCP(\d+)","\1")

alpha(seriesList, alpha)
Assigns the given alpha transparency setting to the series. Takes a float value between 0 and 1.

areaBetween(seriesList)
Draws the area in between the two series in seriesList

asPercent(seriesList, total=None)
Calculates a percentage of the total of a wildcard series. If total is specified, each series will be calculated as a
percentage of that total. If total is not specified, the sum of all points in the wildcard series will be used instead.

The total parameter may be a single series or a numeric value.

Example:

&target=asPercent(Server01.connections.{failed,succeeded}, Server01.connections.attempted)
&target=asPercent(apache01.threads.busy,1500)
&target=asPercent(Server01.cpu.*.jiffies)

averageAbove(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the
metrics with an average value above N for the time period specified.

Example:

&target=averageAbove(server*.instance*.threads.busy,25)

Draws the servers with average values above 25.

averageBelow(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the
metrics with an average value below N for the time period specified.

Example:

&target=averageBelow(server*.instance*.threads.busy,25)

Draws the servers with average values below 25.

averageSeries(*seriesLists)
Short Alias: avg()

Takes one metric or a wildcard seriesList. Draws the average value of all metrics passed at each time.

Example:

&target=averageSeries(company.server.*.threads.busy)

averageSeriesWithWildcards(seriesList, *position)
Call averageSeries after inserting wildcards at the given position(s).

Example:

&target=averageSeriesWithWildcards(host.cpu-[0-7].cpu-{user,system}.value, 1)

This would be the equivalent of target=averageSeries(host.*.cpu-user.value)&target=averageSeries(host.*.cpu-system.value)

cactiStyle(seriesList)
Takes a series list and modifies the aliases to provide column aligned output with Current, Max, and Min values
in the style of cacti. NOTE: column alignment only works with monospace fonts such as terminus.

42 Chapter 10. Functions

Graphite Documentation, Release 0.9.10

&target=cactiStyle(ganglia.*.net.bytes_out)

color(seriesList, theColor)
Assigns the given color to the seriesList

Example:

&target=color(collectd.hostname.cpu.0.user, ’green’)
&target=color(collectd.hostname.cpu.0.system, ’ff0000’)
&target=color(collectd.hostname.cpu.0.idle, ’gray’)
&target=color(collectd.hostname.cpu.0.idle, ’6464ffaa’)

constantLine(value)
Takes a float F.

Draws a horizontal line at value F across the graph.

Example:

&target=constantLine(123.456)

cumulative(seriesList)
Takes one metric or a wildcard seriesList.

By default, when a graph is drawn, and the width of the graph in pixels is smaller than the number of datapoints
to be graphed, Graphite averages the value at each pixel. The cumulative() function changes the consolidation
function to sum from average. This is especially useful in sales graphs, where fractional values make no sense
(How can you have half of a sale?)

&target=cumulative(Sales.widgets.largeBlue)

currentAbove(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the
metrics whose value is above N at the end of the time period specified.

Example:

&target=highestAbove(server*.instance*.threads.busy,50)

Draws the servers with more than 50 busy threads.

currentBelow(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the
metrics whose value is below N at the end of the time period specified.

Example:

&target=currentBelow(server*.instance*.threads.busy,3)

Draws the servers with less than 3 busy threads.

dashed(*seriesList)
Takes one metric or a wildcard seriesList, followed by a float F.

Draw the selected metrics with a dotted line with segments of length F If omitted, the default length of the
segments is 5.0

Example:

&target=dashed(server01.instance01.memory.free,2.5)

10.2. List of functions 43

Graphite Documentation, Release 0.9.10

derivative(seriesList)
This is the opposite of the integral function. This is useful for taking a running total metric and showing how
many requests per minute were handled.

Example:

&target=derivative(company.server.application01.ifconfig.TXPackets)

Each time you run ifconfig, the RX and TXPackets are higher (assuming there is network traffic.) By applying
the derivative function, you can get an idea of the packets per minute sent or received, even though you’re only
recording the total.

diffSeries(*seriesLists)
Can take two or more metrics, or a single metric and a constant. Subtracts parameters 2 through n from parameter
1.

Example:

&target=diffSeries(service.connections.total,service.connections.failed)
&target=diffSeries(service.connections.total,5)

divideSeries(dividendSeriesList, divisorSeriesList)
Takes a dividend metric and a divisor metric and draws the division result. A constant may not be passed. To
divide by a constant, use the scale() function (which is essentially a multiplication operation) and use the inverse
of the dividend. (Division by 8 = multiplication by 1/8 or 0.125)

Example:

&target=divideSeries(Series.dividends,Series.divisors)

drawAsInfinite(seriesList)
Takes one metric or a wildcard seriesList. If the value is zero, draw the line at 0. If the value is above zero, draw
the line at infinity. If the value is null or less than zero, do not draw the line.

Useful for displaying on/off metrics, such as exit codes. (0 = success, anything else = failure.)

Example:

drawAsInfinite(Testing.script.exitCode)

events(*tags)
Returns the number of events at this point in time. Usable with drawAsInfinite.

Example:

&target=events("tag-one", "tag-two")
&target=events("*")

Returns all events tagged as “tag-one” and “tag-two” and the second one returns all events.

exclude(seriesList, pattern)
Takes a metric or a wildcard seriesList, followed by a regular expression in double quotes. Excludes metrics
that match the regular expression.

Example:

&target=exclude(servers*.instance*.threads.busy,"server02")

group(*seriesLists)
Takes an arbitrary number of seriesLists and adds them to a single seriesList. This is used to pass multiple
seriesLists to a function which only takes one

44 Chapter 10. Functions

Graphite Documentation, Release 0.9.10

groupByNode(seriesList, nodeNum, callback)
Takes a serieslist and maps a callback to subgroups within as defined by a common node

&target=groupByNode(ganglia.by-function.*.*.cpu.load5,2,"sumSeries")

Would return multiple series which are each the result of applying the "sumSeries" function
to groups joined on the second node (0 indexed) resulting in a list of targets like
sumSeries(ganglia.by-function.server1.*.cpu.load5),sumSeries(ganglia.by-function.server2.*.cpu.load5),...

highestAverage(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the
top N metrics with the highest average value for the time period specified.

Example:

&target=highestAverage(server*.instance*.threads.busy,5)

Draws the top 5 servers with the highest average value.

highestCurrent(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the N
metrics with the highest value at the end of the time period specified.

Example:

&target=highestCurrent(server*.instance*.threads.busy,5)

Draws the 5 servers with the highest busy threads.

highestMax(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N.

Out of all metrics passed, draws only the N metrics with the highest maximum value in the time period specified.

Example:

&target=highestCurrent(server*.instance*.threads.busy,5)

Draws the top 5 servers who have had the most busy threads during the time period specified.

hitcount(seriesList, intervalString, alignToInterval=False)
Estimate hit counts from a list of time series.

This function assumes the values in each time series represent hits per second. It calculates hits per some larger
interval such as per day or per hour. This function is like summarize(), except that it compensates automatically
for different time scales (so that a similar graph results from using either fine-grained or coarse-grained records)
and handles rarely-occurring events gracefully.

holtWintersAberration(seriesList, delta=3)
Performs a Holt-Winters forecast using the series as input data and plots the positive or negative deviation of the
series data from the forecast.

holtWintersConfidenceArea(seriesList, delta=3)
Performs a Holt-Winters forecast using the series as input data and plots the area between the upper and lower
bands of the predicted forecast deviations.

holtWintersConfidenceBands(seriesList, delta=3)
Performs a Holt-Winters forecast using the series as input data and plots upper and lower bands with the pre-
dicted forecast deviations.

holtWintersForecast(seriesList)
Performs a Holt-Winters forecast using the series as input data. Data from one week previous to the series is
used to bootstrap the initial forecast.

10.2. List of functions 45

Graphite Documentation, Release 0.9.10

integral(seriesList)
This will show the sum over time, sort of like a continuous addition function. Useful for finding totals or trends
in metrics that are collected per minute.

Example:

&target=integral(company.sales.perMinute)

This would start at zero on the left side of the graph, adding the sales each minute, and show the total sales for
the time period selected at the right side, (time now, or the time specified by ‘&until=’).

keepLastValue(seriesList)
Takes one metric or a wildcard seriesList. Continues the line with the last received value when gaps (‘None’
values) appear in your data, rather than breaking your line.

Example:

&target=keepLastValue(Server01.connections.handled)

legendValue(seriesList, *valueTypes)
Takes one metric or a wildcard seriesList and a string in quotes. Appends a value to the metric name in the
legend. Currently one or several of: last, avg, total, min, max. The last argument can be si (default) or binary,
in that case values will be formatted in the corresponding system.

&target=legendValue(Sales.widgets.largeBlue, ‘avg’, ‘max’, ‘si’)

limit(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N.

Only draw the first N metrics. Useful when testing a wildcard in a metric.

Example:

&target=limit(server*.instance*.memory.free,5)

Draws only the first 5 instance’s memory free.

lineWidth(seriesList, width)
Takes one metric or a wildcard seriesList, followed by a float F.

Draw the selected metrics with a line width of F, overriding the default value of 1, or the &lineWidth=X.X
parameter.

Useful for highlighting a single metric out of many, or having multiple line widths in one graph.

Example:

&target=lineWidth(server01.instance01.memory.free,5)

logarithm(seriesList, base=10)
Takes one metric or a wildcard seriesList, a base, and draws the y-axis in logarithmic format. If base is omitted,
the function defaults to base 10.

Example:

&target=log(carbon.agents.hostname.avgUpdateTime,2)

lowestAverage(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the
bottom N metrics with the lowest average value for the time period specified.

Example:

46 Chapter 10. Functions

Graphite Documentation, Release 0.9.10

&target=lowestAverage(server*.instance*.threads.busy,5)

Draws the bottom 5 servers with the lowest average value.

lowestCurrent(seriesList, n)
Takes one metric or a wildcard seriesList followed by an integer N. Out of all metrics passed, draws only the N
metrics with the lowest value at the end of the time period specified.

Example:

&target=lowestCurrent(server*.instance*.threads.busy,5)

Draws the 5 servers with the least busy threads right now.

maxSeries(*seriesLists)
Takes one metric or a wildcard seriesList. For each datapoint from each metric passed in, pick the maximum
value and graph it.

Example:

&target=maxSeries(Server*.connections.total)

maximumAbove(seriesList, n)
Takes one metric or a wildcard seriesList followed by a constant n. Draws only the metrics with a maximum
value above n.

Example:

&target=maximumAbove(system.interface.eth*.packetsSent,1000)

This would only display interfaces which sent more than 1000 packets/min.

maximumBelow(seriesList, n)
Takes one metric or a wildcard seriesList followed by a constant n. Draws only the metrics with a maximum
value below n.

Example:

&target=maximumBelow(system.interface.eth*.packetsSent,1000)

This would only display interfaces which sent less than 1000 packets/min.

minSeries(*seriesLists)
Takes one metric or a wildcard seriesList. For each datapoint from each metric passed in, pick the minimum
value and graph it.

Example:

&target=minSeries(Server*.connections.total)

minimumAbove(seriesList, n)
Takes one metric or a wildcard seriesList followed by a constant n. Draws only the metrics with a minimum
value above n.

Example:

&target=minimumAbove(system.interface.eth*.packetsSent,1000)

This would only display interfaces which sent more than 1000 packets/min.

mostDeviant(n, seriesList)
Takes an integer N followed by one metric or a wildcard seriesList. Draws the N most deviant metrics. To find

10.2. List of functions 47

Graphite Documentation, Release 0.9.10

the deviant, the average across all metrics passed is determined, and then the average of each metric is compared
to the overall average.

Example:

&target=mostDeviant(5, server*.instance*.memory.free)

Draws the 5 instances furthest from the average memory free.

movingAverage(seriesList, windowSize)
Takes one metric or a wildcard seriesList followed by a number N of datapoints and graphs the average of N
previous datapoints. N-1 datapoints are set to None at the beginning of the graph.

&target=movingAverage(Server.instance01.threads.busy,10)

movingMedian(seriesList, windowSize)
Takes one metric or a wildcard seriesList followed by a number N of datapoints and graphs the median of N
previous datapoints. N-1 datapoints are set to None at the beginning of the graph.

&target=movingMedian(Server.instance01.threads.busy,10)

multiplySeries(*seriesLists)
Takes two or more series and multiplies their points. A constant may not be used. To multiply by a constant,
use the scale() function.

Example:

&target=multiplySeries(Series.dividends,Series.divisors)

nPercentile(seriesList, n)
Returns n-percent of each series in the seriesList.

nonNegativeDerivative(seriesList, maxValue=None)
Same as the derivative function above, but ignores datapoints that trend down. Useful for counters that increase
for a long time, then wrap or reset. (Such as if a network interface is destroyed and recreated by unloading and
re-loading a kernel module, common with USB / WiFi cards.

Example:

&target=derivative(company.server.application01.ifconfig.TXPackets)

offset(seriesList, factor)
Takes one metric or a wildcard seriesList followed by a constant, and adds the constant to each datapoint.

Example:

&target=offset(Server.instance01.threads.busy,10)

percentileOfSeries(seriesList, n, interpolate=False)
percentileOfSeries returns a single series which is composed of the n-percentile values taken across a wildcard
series at each point. Unless interpolate is set to True, percentile values are actual values contained in one of the
supplied series.

randomWalkFunction(name)
Short Alias: randomWalk()

Returns a random walk starting at 0. This is great for testing when there is no real data in whisper.

Example:

&target=randomWalk("The.time.series")

48 Chapter 10. Functions

Graphite Documentation, Release 0.9.10

This would create a series named “The.time.series” that contains points where x(t) == x(t-1)+random()-0.5, and
x(0) == 0.

rangeOfSeries(*seriesLists)
Takes a wildcard seriesList. Distills down a set of inputs into the range of the series

Example:

&target=rangeOfSeries(Server*.connections.total)

removeAbovePercentile(seriesList, n)
Removes data above the nth percentile from the series or list of series provided. Values below this percentile are
assigned a value of None.

removeAboveValue(seriesList, n)
Removes data above the given threshold from the series or list of series provided. Values below this threshole
are assigned a value of None

removeBelowPercentile(seriesList, n)
Removes data above the nth percentile from the series or list of series provided. Values below this percentile are
assigned a value of None.

removeBelowValue(seriesList, n)
Removes data above the given threshold from the series or list of series provided. Values below this threshole
are assigned a value of None

scale(seriesList, factor)
Takes one metric or a wildcard seriesList followed by a constant, and multiplies the datapoint by the constant
provided at each point.

Example:

&target=scale(Server.instance01.threads.busy,10)
&target=scale(Server.instance*.threads.busy,10)

scaleToSeconds(seriesList, seconds)
Takes one metric or a wildcard seriesList and returns “value per seconds” where seconds is a last argument to
this functions.

Useful in conjunction with derivative or integral function if you want to normalize its result to a known resolution
for arbitrary retentions

secondYAxis(seriesList)
Graph the series on the secondary Y axis.

sinFunction(name, amplitude=1)
Short Alias: sin()

Just returns the sine of the current time. The optional amplitude parameter changes the amplitude of the wave.

Example:

&target=sin("The.time.series", 2)

This would create a series named “The.time.series” that contains sin(x)*2.

smartSummarize(seriesList, intervalString, func=’sum’, alignToFrom=False)
Smarter experimental version of summarize.

The alignToFrom parameter has been deprecated, it no longer has any effect. Alignment happens automatically
for days, hours, and minutes.

10.2. List of functions 49

Graphite Documentation, Release 0.9.10

sortByMaxima(seriesList)
Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the maximum value across the time period specified. Useful with the &areaMode=all
parameter, to keep the lowest value lines visible.

Example:

&target=sortByMaxima(server*.instance*.memory.free)

sortByMinima(seriesList)
Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the lowest value across the time period specified.

Example:

&target=sortByMinima(server*.instance*.memory.free)

stacked(seriesLists, stackName=’__DEFAULT__’)
Takes one metric or a wildcard seriesList and change them so they are stacked. This is a way of stacking just
a couple of metrics without having to use the stacked area mode (that stacks everything). By means of this a
mixed stacked and non stacked graph can be made

It can also take an optional argument with a name of the stack, in case there is more than one, e.g. for input and
output metrics.

Example:

&target=stacked(company.server.application01.ifconfig.TXPackets, ’tx’)

stdev(seriesList, points, windowTolerance=0.1)
Takes one metric or a wildcard seriesList followed by an integer N. Draw the Standard Deviation of all metrics
passed for the past N datapoints. If the ratio of null points in the window is greater than windowTolerance, skip
the calculation. The default for windowTolerance is 0.1 (up to 10% of points in the window can be missing).
Note that if this is set to 0.0, it will cause large gaps in the output anywhere a single point is missing.

Example:

&target=stdev(server*.instance*.threads.busy,30)
&target=stdev(server*.instance*.cpu.system,30,0.0)

substr(seriesList, start=0, stop=0)
Takes one metric or a wildcard seriesList followed by 1 or 2 integers. Assume that the metric name is a list
or array, with each element separated by dots. Prints n - length elements of the array (if only one integer n is
passed) or n - m elements of the array (if two integers n and m are passed). The list starts with element 0 and
ends with element (length - 1).

Example:

&target=substr(carbon.agents.hostname.avgUpdateTime,2,4)

The label would be printed as “hostname.avgUpdateTime”.

sumSeries(*seriesLists)
Short form: sum()

This will add metrics together and return the sum at each datapoint. (See integral for a sum over time)

Example:

&target=sum(company.server.application*.requestsHandled)

50 Chapter 10. Functions

Graphite Documentation, Release 0.9.10

This would show the sum of all requests handled per minute (provided requestsHandled are collected once a
minute). If metrics with different retention rates are combined, the coarsest metric is graphed, and the sum of
the other metrics is averaged for the metrics with finer retention rates.

sumSeriesWithWildcards(seriesList, *position)
Call sumSeries after inserting wildcards at the given position(s).

Example:

&target=sumSeriesWithWildcards(host.cpu-[0-7].cpu-{user,system}.value, 1)

This would be the equivalent of target=sumSeries(host.*.cpu-user.value)&target=sumSeries(host.*.cpu-system.value)

summarize(seriesList, intervalString, func=’sum’, alignToFrom=False)
Summarize the data into interval buckets of a certain size.

By default, the contents of each interval bucket are summed together. This is useful for counters where each
increment represents a discrete event and retrieving a “per X” value requires summing all the events in that
interval.

Specifying ‘avg’ instead will return the mean for each bucket, which can be more useful when the value is a
gauge that represents a certain value in time.

‘max’, ‘min’ or ‘last’ can also be specified.

By default, buckets are caculated by rounding to the nearest interval. This works well for intervals smaller than
a day. For example, 22:32 will end up in the bucket 22:00-23:00 when the interval=1hour.

Passing alignToFrom=true will instead create buckets starting at the from time. In this case, the bucket for 22:32
depends on the from time. If from=6:30 then the 1hour bucket for 22:32 is 22:30-23:30.

Example:

&target=summarize(counter.errors, "1hour") # total errors per hour
&target=summarize(nonNegativeDerivative(gauge.num_users), "1week") # new users per week
&target=summarize(queue.size, "1hour", "avg") # average queue size per hour
&target=summarize(queue.size, "1hour", "max") # maximum queue size during each hour
&target=summarize(metric, "13week", "avg", true)&from=midnight+20100101 # 2010 Q1-4

threshold(value, label=None, color=None)
Takes a float F, followed by a label (in double quotes) and a color. (See bgcolor in the render_api_ for valid
color names & formats.)

Draws a horizontal line at value F across the graph.

Example:

&target=threshold(123.456, "omgwtfbbq", red)

timeFunction(name)
Short Alias: time()

Just returns the timestamp for each X value. T

Example:

&target=time("The.time.series")

This would create a series named “The.time.series” that contains in Y the same value (in seconds) as X.

timeShift(seriesList, timeShift)
Takes one metric or a wildcard seriesList, followed by a quoted string with the length of time (See from /
until in the render_api_ for examples of time formats).

10.2. List of functions 51

Graphite Documentation, Release 0.9.10

Draws the selected metrics shifted in time. If no sign is given, a minus sign (-) is implied which will shift the
metric back in time. If a plus sign (+) is given, the metric will be shifted forward in time.

Useful for comparing a metric against itself at a past periods or correcting data stored at an offset.

Example:

&target=timeShift(Sales.widgets.largeBlue,"7d")
&target=timeShift(Sales.widgets.largeBlue,"-7d")
&target=timeShift(Sales.widgets.largeBlue,"+1h")

transformNull(seriesList, default=0)
Takes a metric or wild card seriesList and an optional value to transform Nulls to. Default is 0. This method
compliments drawNullAsZero flag in graphical mode but also works in text only mode. Example:

&target=transformNull(webapp.pages.*.views,-1)

This would take any page that didn’t have values and supply negative 1 as a default. Any other numeric value
may be used as well.

useSeriesAbove(seriesList, value, search, replace)
Compares the maximum of each series against the given value. If the series maximum is greater than value, the
regular expression search and replace is applied against the series name to plot a related metric

e.g. given useSeriesAbove(ganglia.metric1.reqs,10,’reqs’,’time’), the response time metric will be plotted only
when the maximum value of the corresponding request/s metric is > 10

&target=useSeriesAbove(ganglia.metric1.reqs,10,"reqs","time")

52 Chapter 10. Functions

CHAPTER

ELEVEN

THE DASHBOARD UI

...

53

Graphite Documentation, Release 0.9.10

54 Chapter 11. The Dashboard UI

CHAPTER

TWELVE

THE WHISPER DATABASE

Whisper is a fixed-size database, similar in design and purpose to RRD (round-robin-database). It provides fast,
reliable storage of numeric data over time. Whisper allows for higher resolution (seconds per point) of recent data to
degrade into lower resolutions for long-term retention of historical data.

12.1 Data Points

Data points in Whisper are stored on-disk as big-endian double-precision floats. Each value is paired with a timestamp
in seconds since the UNIX Epoch (01-01-1970). The data value is parsed by the Python float() function and as such
behaves in the same way for special strings such as ’inf’. Maximum and minimum values are determined by the
Python interpreter’s allowable range for float values which can be found by executing:

python -c ’import sys; print sys.float_info’

12.2 Archives: Retention and Precision

Whisper databases contain one or more archives, each with a specific data resolution and retention (defined in number
of points or max timestamp age). Archives are ordered from the highest-resolution and shortest retention archive to
the lowest-resolution and longest retention period archive.

To support accurate aggregation from higher to lower resolution archives, the number of points in a longer retention
archive must be divisible by its next lower retention archive. For example, an archive with 1 data points every 60
seconds and retention of 120 points (2 hours worth of data) can have a lower-resolution archive following it with a
resolution of 1 data point every 300 seconds for 1200 points, while the same resolution but for only 1000 points would
be invalid since 1000 is not evenly divisible by 120.

The total retention time of the database is determined by the archive with the highest retention as the time period
covered by each archive is overlapping (see Multi-Archive Storage and Retrieval Behavior). That is, a pair of archives
with retentions of 1 month and 1 year will not provide 13 months of data storage. Instead, it will provide 1 year of
storage.

12.3 Rollup Aggregation

Whisper databases with more than a single archive need a strategy to collapse multiple data points for when the data
rolls up a lower precision archive. By default, an average function is used. Available aggregation methods are: *
average * sum * last * max * min

55

http://docs.python.org/library/functions.html#float

Graphite Documentation, Release 0.9.10

12.4 Multi-Archive Storage and Retrieval Behavior

When Whisper writes to a database with multiple archives, the incoming data point is written to all archives at once.
The data point will be written to the lowest resolution archive as-is, and will be aggregated by the configured aggrega-
tion method (see Rollup Aggregation) and placed into each of the higher-retention archives.

When data is retrieved (scoped by a time range), the first archive which can satisfy the entire time period is used. If
the time period overlaps an archive boundary, the lower-resolution archive will be used. This allows for a simpler
behavior while retrieving data as the data’s resolution is consistent through an entire returned series.

12.5 Disk Space Efficiency

Whisper is somewhat inefficient in its usage of disk space because of certain design choices:

Each data point is stored with its timestamp Rather than a timestamp being inferred from its position in the archive,
timestamps are stored with each point. The timestamps are during data retrieval to check the validity of the data
point. If a timestamp does not match the expected value for its position relative to the beginning of the requested
series, it is known to be out of date and a null value is returned

Archives overlap time periods During the write of a data point, Whisper stores the same data in all archives at once
(see Multi-Archive Storage and Retrieval Behavior). Implied by this behavior is that all archives store from
now until each of their retention times. Because of this, lower-resolution archives should be configured to
significantly lower resolution and higher retentions than their higher-resolution counterparts so as to reduce the
overlap.

All time-slots within an archive take up space whether or not a value is stored While Whisper allows for reliable
storage of irregular updates, it is most space efficient when data points are stored at every update interval.
This behavior is a consequence of the fixed-size design of the database and allows the reading and writing of
series data to be performed in a single contiguous disk operation (for each archive in a database).

12.6 Differences Between Whisper and RRD

RRD can not take updates to a time-slot prior to its most recent update This means that there is no way to back-fill
data in an RRD series. Whisper does not have this limitation, and this makes importing historical data into
Graphite much more simple and easy

RRD was not designed with irregular updates in mind In many cases (depending on configuration) if an update is
made to an RRD series but is not followed up by another update soon, the original update will be lost. This
makes it less suitable for recording data such as operational metrics (e.g. code pushes)

Whisper requires that metric updates occur at the same interval as the finest resolution storage archive This
pushes the onus of aggregating values to fit into the finest precision archive to the user rather than the database.
It also means that updates are written immediately into the finest precision archive rather than being staged first
for aggregation and written later (during a subsequent write operation) as they are in RRD.

12.7 Performance

Whisper is fast enough for most purposes. It is slower than RRDtool primarily as a consequence of Whisper being
written in Python, while RRDtool is written in C. The speed difference between the two in practice is quite small as
much effort was spent to optimize Whisper to be as close to RRDtool’s speed as possible. Testing has shown that
update operations take anywhere from 2 to 3 times as long as RRDtool, and fetch operations take anywhere from 2 to

56 Chapter 12. The Whisper Database

Graphite Documentation, Release 0.9.10

5 times as long. In practice the actual difference is measured in hundreds of microseconds (10^-4) which means less
than a millisecond difference for simple cases.

12.8 Database Format

Whisper-
File

Header,Data

Header Meta-
data,ArchiveInfo+
Metadata aggregation-

Type,maxRetention,xFilesFactor,archiveCount
ArchiveInfo Offset,SecondsPerPoint,Points

Data Archive+
Archive Point+

Point times-
tamp,value

Data types in Python’s struct format:

Metadata !2LfL
ArchiveInfo !3L
Point !Ld

12.8. Database Format 57

http://docs.python.org/library/struct.html#format-strings

Graphite Documentation, Release 0.9.10

58 Chapter 12. The Whisper Database

CHAPTER

THIRTEEN

GRAPHITE TERMINOLOGY

Graphite uses many terms that can have ambiguous meaning. The following definitions are what these terms mean in
the context of Graphite.

datapoint A value stored at a timestamp bucket. If no value is recorded at a particular timestamp bucket in a series,
the value will be None (null).

function A time-series function which transforms, combines, or performs computations on one or more series. See
Functions

metric See series

metric series See series

precision See resolution

resolution The number of seconds per datapoint in a series. Series are created with a resolution which determines
how often a datapoint may be stored. This resolution is represented as the number of seconds in time that each
datapoint covers. A series which stores one datapoint per minute has a resolution of 60 seconds. Similarly, a
series which stores one datapoint per second has a resolution of 1 second.

retention The number of datapoints retained in a series. Alternatively: The length of time datapoints are stored in a
series.

series A named set of datapoints. A series is identified by a unique name, which is composed of elements sep-
arated by periods (.) which are used to display the collection of series into a heirarchical tree. A series
storing system load average on a server called apache02 in datacenter metro_east might be named as
metro_east.servers.apache02.system.load_average

series list A series name or wildcard which matches one or more series. Series lists are received by functions as a
list of matching series. From a user perspective, a series list is merely the name of a metric. For example, each
of these would be considered a single series list:

• metro_east.servers.apache02.system.load_average.1_min,

• metro_east.servers.apache0{1,2,3}.system.load_average.1_min

• metro_east.servers.apache01.system.load_average.*

target A source of data used as input for a Graph. A target can be a single metric name, a metric wildcard, or either
of these enclosed within one or more functions

timestamp A point in time in which values can be associated. Time in Graphite is represented as epoch time with a
maximum resolution of 1-second.

timestamp bucket A timestamp after rounding down to the nearest multiple of a series’s resolution.

59

http://en.wikipedia.org/wiki/Epoch_time

Graphite Documentation, Release 0.9.10

value A numeric or null value. Values are stored as double-precision floats. Values are parsed using the python
float() constructor and can also be None (null). The range and precision of values is system dependant and
can be found by executing (with Python 2.6 or later):: python -c ‘import sys; print sys.float_info’

60 Chapter 13. Graphite Terminology

http://docs.python.org/library/functions.html#float

CHAPTER

FOURTEEN

TOOLS THAT WORK WITH GRAPHITE

14.1 Bucky

Bucky is a small service implemented in Python for collecting and translating metrics for Graphite. It can current
collect metric data from CollectD daemons and from StatsD clients.

14.2 collectd

collectd is a daemon which collects system performance statistics periodically and provides mechanisms to store the
values in a variety of ways, including RRD. To send collectd metrics into carbon/graphite, use:

• Jordan Sissel’s node collectd-to-graphite proxy

• Joe Miller’s perl collectd-graphite plugin

• Gregory Szorc’s python collectd-carbon plugin

• Scott Sanders’s C collectd-write_graphite plugin

• Paul J. Davis’s Bucky service

Graphite can also read directly from collectd‘s RRD files. RRD files can simply be added to STORAGE_DIR/rrd
(as long as directory names and files do not contain any . characters). For example, collectd’s
host.name/load/load.rrd can be symlinked to rrd/collectd/host_name/load/load.rrd to
graph collectd.host_name.load.load.{short,mid,long}term.

14.3 Collectl

Collectl is a collection tool for system metrics that can be run both interactively and as a daemon and has support for
collecting from a broad set of subsystems. Collectl includes a Graphite interface which allows data to easily be fed to
Graphite for storage.

14.4 Charcoal

Charcoal is a simple Sinatra dashboarding frontend for Graphite or any other system status service which can generate
images directly from a URL. Charcoal configuration is driven by a YAML config file.

61

http://pypi.python.org/pypi/bucky
http://collectd.org/
https://github.com/loggly/collectd-to-graphite
https://github.com/joemiller/collectd-graphite
https://github.com/indygreg/collectd-carbon
https://github.com/jssjr/collectd-write_graphite
http://pypi.python.org/pypi/bucky
http://collectd.org/
http://collectl.sourceforge.net/
https://github.com/cebailey59/charcoal

Graphite Documentation, Release 0.9.10

14.5 Diamond

Diamond is a Python daemon that collects system metrics and publishes them to Graphite. It is capable of collecting
cpu, memory, network, I/O, load and disk metrics. Additionally, it features an API for implementing custom collectors
for gathering metrics from almost any source.

14.6 Ganglia

Ganglia is a scalable distributed monitoring system for high-performance computing systems such as clusters and
Grids. It collects system performance metrics and stores them in RRD, but now there is an add-on that allows Ganglia
to send metrics directly to Graphite. Further integration work is underway.

14.7 GDash

Gdash is a simple Graphite dashboard built using Twitters Bootstrap driven by a small DSL.

14.8 Graphene

Graphene is a Graphite dashboard toolkit based on D3.js and Backbone.js which was made to offer a very aesthetic
realtime dashboard. Graphene provides a solution capable of displaying thousands upon thousands of datapoints all
updated in realtime.

14.9 Graphite-relay

Graphite-relay is a fast Graphite relay written in Scala with the Netty framework.

14.10 Graphite-Tattle

Graphite-Tattle is a self-service dashboard frontend for Graphite and Ganglia.

14.11 Graphiti

Graphiti is a powerful dashboard front end with a focus on ease of access, ease of recovery and ease of tweaking and
manipulation.

14.12 Graphitoid

Graphitoid is an Android app which allows one to browse and display Graphite graphs on an Android device.

62 Chapter 14. Tools That Work With Graphite

http://opensource.brightcove.com/project/Diamond/
http://ganglia.info/
https://github.com/ganglia/ganglia_contrib/tree/master/graphite_integration/
https://github.com/ripienaar/gdash.git
http://jondot.github.com/graphene/
http://mbostock.github.com/d3/
http://documentcloud.github.com/backbone/
https://github.com/markchadwick/graphite-relay
https://github.com/wayfair/Graphite-Tattle
http://ganglia.info/
https://github.com/paperlesspost/graphiti
https://market.android.com/details?id=com.tnc.android.graphite

Graphite Documentation, Release 0.9.10

14.13 Graphios

Graphios is a small Python daemon to send Nagios performance data (perfdata) to Graphite.

14.14 Graphitejs

Graphitejs is a jQuery plugin for easily making and displaying graphs and updating them on the fly using the Graphite
URL api.

14.15 Grockets

Grockets is a node.js application which provides streaming JSON data over HTTP from Graphite.

14.16 HoardD

HoardD is a Node.js app written in CoffeeScript to send data from servers to Graphite, much like collectd does, but
aimed at being easier to expand and with less footprint. It comes by default with basic collectors plus Redis and
MySQL metrics, and can be expanded with Javascript or CoffeeScript.

14.17 Host sFlow

Host sFlow is an open source implementation of the sFlow protocol (http://www.sflow.org), exporting a standard set
of host cpu, memory, disk and network I/O metrics. The sflow2graphite utility converts sFlow to Graphite’s plaintext
protocol, allowing Graphite to receive sFlow metrics.

14.18 hubot-scripts

Hubot is a Campfire bot written in Node.js and CoffeeScript. The related hubot-scripts project includes a Graphite
script which supports searching and displaying saved graphs from the Composer directory in your Campfire rooms.

14.19 jmxtrans

jmxtrans is a powerful tool that performs JMX queries to collect metrics from Java applications. It is requires very
little configuration and is capable of sending metric data to several backend applications, including Graphite.

14.20 Logster

Logster is a utility for reading log files and generating metrics in Graphite or Ganglia. It is ideal for visualizing trends
of events that are occurring in your application/system/error logs. For example, you might use logster to graph the
number of occurrences of HTTP response code that appears in your web server logs.

14.13. Graphios 63

https://github.com/shawn-sterling/graphios
https://github.com/prestontimmons/graphitejs
https://github.com/disqus/grockets
https://github.com/coredump/hoardd
http://host-sflow.sourceforge.net/
http://www.sflow.org
https://github.com/github/hubot
https://github.com/github/hubot-scripts
http://code.google.com/p/jmxtrans/
https://github.com/etsy/logster

Graphite Documentation, Release 0.9.10

14.21 Pencil

Pencil is a monitoring frontend for graphite. It runs a webserver that dishes out pretty Graphite URLs in interesting
and intuitive layouts.

14.22 Rocksteady

Rocksteady is a system that ties together Graphite, RabbitMQ, and Esper. Developed by AdMob (who was then
bought by Google), this was released by Google as open source (http://google-opensource.blogspot.com/2010/09/get-
ready-to-rocksteady.html).

14.23 Scales

Scales is a Python server state and statistics library that can output its data to Graphite.

14.24 Shinken

Shinken is a system monitoring solution compatible with Nagios which emphasizes scalability, flexibility, and ease of
setup. Shinken provides complete integration with Graphite for processing and display of performance data.

14.25 statsd

statsd is a simple daemon for easy stats aggregation, developed by the folks at Etsy. A list of forks and alternative
implementations can be found at <http://joemiller.me/2011/09/21/list-of-statsd-server-implementations/>

14.26 Tasseo

Tasseo is a lightweight, easily configurable, real-time dashboard for Graphite metrics.

64 Chapter 14. Tools That Work With Graphite

https://github.com/fetep/pencil
http://code.google.com/p/rocksteady/
http://www.rabbitmq.com/
http://esper.codehaus.org/
http://google-opensource.blogspot.com/2010/09/get-ready-to-rocksteady.html
http://google-opensource.blogspot.com/2010/09/get-ready-to-rocksteady.html
http://www.shinken-monitoring.org/
https://github.com/etsy/statsd
http://joemiller.me/2011/09/21/list-of-statsd-server-implementations/
https://github.com/obfuscurity/tasseo

CHAPTER

FIFTEEN

WHO IS USING GRAPHITE?

Here are some organizations that use Graphite:

• Orbitz

• Sears Holdings

• Etsy (see http://codeascraft.etsy.com/2010/12/08/track-every-release/)

• Google (opensource Rocksteady project)

• Media Temple

• Canonical

• Brightcove (see http://opensource.brightcove.com/project/Diamond/)

And many more

65

http://www.orbitz.com/
http://www.sears.com/
http://www.etsy.com/
http://codeascraft.etsy.com/2010/12/08/track-every-release/
http://google-opensource.blogspot.com/2010/09/get-ready-to-rocksteady.html
http://mediatemple.net/
http://www.canonical.com
http://www.brightcove.com
http://opensource.brightcove.com/project/Diamond/

Graphite Documentation, Release 0.9.10

66 Chapter 15. Who is using Graphite?

CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

67

Graphite Documentation, Release 0.9.10

68 Chapter 16. Indices and tables

PYTHON MODULE INDEX

g
graphite.render.functions, 41

69

	Overview
	About the project
	The architecture in a nutshell

	Installing Graphite
	Dependencies
	Fulfilling Dependencies
	Default Installation Layout
	Installing Graphite
	Initial Configuration
	Help! It didn't work!
	Post-Install Tasks

	The Carbon Daemons
	carbon-cache.py
	carbon-relay.py
	carbon-aggregator.py

	Configuring Carbon
	carbon.conf
	storage-schemas.conf
	storage-aggregation.conf
	relay-rules.conf
	aggregation-rules.conf
	whitelist and blacklist

	Feeding In Your Data
	The plaintext protocol
	The pickle protocol
	Using AMQP

	Configuring The Webapp
	Administering The Webapp
	Using The Composer
	The Render URL API
	Graphing Metrics
	Data Display Formats
	Graph Parameters

	Functions
	Usage
	List of functions

	The Dashboard UI
	The Whisper Database
	Data Points
	Archives: Retention and Precision
	Rollup Aggregation
	Multi-Archive Storage and Retrieval Behavior
	Disk Space Efficiency
	Differences Between Whisper and RRD
	Performance
	Database Format

	Graphite Terminology
	Tools That Work With Graphite
	Bucky
	collectd
	Collectl
	Charcoal
	Diamond
	Ganglia
	GDash
	Graphene
	Graphite-relay
	Graphite-Tattle
	Graphiti
	Graphitoid
	Graphios
	Graphitejs
	Grockets
	HoardD
	Host sFlow
	hubot-scripts
	jmxtrans
	Logster
	Pencil
	Rocksteady
	Scales
	Shinken
	statsd
	Tasseo

	Who is using Graphite?
	Indices and tables
	Python Module Index

